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The Music Emerges: A Computational Approach to the Speech-to-Song
Illusion

by Arran Lyon

The Speech-to-Song Illusion is an auditory effect whereby a perceptual transformation
occurs during an exact repetitions of some short, naturally spoken phrase, where the
listener begins to hear as if the speaker is singing, when initially it sounded exactly like
speech. Understanding the cognitive mechanisms underlying the illusion could reveal
the inner workings of speech, song and music perception. We use a collection of audio
stimuli (300) related to this illusion along with a parallel set of perceptual rating data
obtained from a previous study. We describe an algorithm that automatically tran-
scribes the melody as a sequence of tones within the natural voice that improves upon
the original formulation. We define a set of 33 melodic, rhythmic, audio and dissonance
related features measured from the raw audio and the extracted tone sequence, including
features previously connected to the occurrence of the illusion. New features include a
metric that measures the distance of the melody to typically composed melodies (accord-
ing to a Bayesian model), along with a novel set of features that captures the dynamic
change of tension and release of the musical phrase based on a measure of sensory disso-
nance. We then propose a suitable method to best assign a binary label (transforming
or non-transforming) to the stimuli based on the continuous range of scores provided by
participants of an experiment. After under going a feature selection procedure, several
data classifiers (linear and non-linear support vector machines and logistic model, along
with two ensembles) that predict if the stimulus will transform from the features all ob-
tain balanced accuracy scores between 0.66 and 0.71, where each model used between 7
and 10 features. We confirm that stability plays an important part in the illusion, along
with the closeness of the melody to typical melodies and the consonance of the ending
of the melody, suggesting transforming stimuli are those with characteristics of ordinary
musical phrases. Finally, 55 participants took part in a follow up validation experiment
with 98 new stimuli to test if the models generalised well, and found that one model in
particular (a linear support vector machine) maintained a score above baseline on the
new vocal stimuli (balanced accuracy 0.65 on the new stimuli).
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Chapter 1

Introduction

Repetition is not repetition. . .
the same action makes you feel something
completely different by the end.

— Pina Bausch

1.1 The Mystery of Repetition

In her book On Repeat, Margulis (2014) recounts the importance and power of repe-
tition in music, and some of the paradoxes that it brings about. The simple act of
repeating short segments of otherwise wavering, atonal contemporary music increased
the listeners response to the music to the point that they were rated as more enjoyable
and artistic then the unaltered material, despite being original work from well cele-
brated composers (Margulis, 2013b). Somehow, reiterating a sound introduces a new
perspective on the segment that could not be appreciated when played only once, and
transforms it into something beyond its original form to such a degree that the listener
feels very different towards it.

Repetition itself materialises on all timescales of the music listening experience — from
short immediate recurrence of rhythms and melodies, to the reiterated choruses in pop
music, to the repeat listening of entire songs or albums over hours, days or years. In all
these levels it seems that there is pleasure in listening to the same sound, ad verbatim,
despite already knowing exactly how it sounds. In fact this effect is rather strong, such
that repeated exposure of a piece of music can increase the listeners preference towards
it simply through the familiarity of the piece, a phenomenon known as the mere exposure
effect (Zajonc, 1968).

1



Introduction 2

It would appear then that recognition of the sound and the expectancy of musical events
are important factors to the listeners satisfaction of it, however this idea is contradicted
in another study by the same author (Margulis, 2010). She found that listeners unfamil-
iar with Beethoven String Quartets enjoyed the performance of the music significantly
less when they were presented with a description of the piece beforehand, suggesting that
prior knowledge of either the dramatic or structural aspects is actively detrimental to
the listeners experience. The paradoxical nature of these results suggests that both the
expected and unexpected are somehow necessary for the enjoyment of music. Perhaps
then the pleasure arises from discovering the music in the sound by oneself, and through
repetition this search for musical information is facilitated by the multiple opportunities
on each loop to find this.

Repetition is also a signifier of intention — in his own development of musique concrète,
Pierre Schaeffer states that exact reproduction of a sound is unnatural, and so to hear
a repeated sound implies a synthetic and human process, that the original sound was
not by accident and not that of some random chance (Schaeffer, 1952). In music in
general, this could be an unusual melodic or rhythmic structure that on first listen
appears ‘wrong’, but when this phrase is repeated multiple times the perception shifts
— what originally ‘broke the rules’ of music turns out to be a compositional choice by the
creator, and the musical idea is cemented and legitimised. This has been demonstrated
by Margulis and Simchy-Gross (2016) with a set of experiments that show that randomly
generated sequences of notes are rated highly as sounding musical when it is repeated
several times, even though it does not conform to any rules of musical theory. In the
authors own experience, while attempting to create an artificial neural network that can
compose original music, it was found the listener responses to the models output was
greatly improved by repeating short phrases produced by the computer. Untouched,
the models output sounded uncanny and unlike that of any human composition, almost
random even, until repetition seemed to legitimise the music to the point that it sounded
like ‘real’ music.

This technique has of course been utilised by composers throughout history and musical
cultures. Repetition is an integral (and almost defining) characteristic in many forms of
music, from ritualistic rhythms, to the cannons of classical, to contemporary composi-
tions, electronic dance music, and the sample culture and beat-loops of hip-hop and pop
music of the modern era. Most notably, Steve Reich is perhaps the most well known
composer of the twentieth century to embrace the power of repetition, where his music
often used tape loops, repeated musical ideas and reiterated vocals to form complete
works. Despite the exact reproduction of the sounds, there is still somehow a dynamic
shift throughout the piece, as each loop has a slight change in its context, thus giving
an ever changing perspective to the sounds.
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Whilst being so prevalent in music, repetition appears to be less fundamental in other
forms of art or expression, its use of which is reserved only as a specific device when
the idea calls for it. For example, in Andy Warhol’s mass produced prints of Marilyn
Monroe, the repetition itself is the art and makes the intended narrative, rather than the
individual prints themselves. In spoken word and poetry, repetition of a phrase serves
to add emphasis to the statement, and to add an extra layer of communication beyond
the literal meaning of the words. In music however the opposite is true — it is rare to
question the use of a composers use of repetition, we think nothing of it for the most
part, and it has even become a point to actively avoid the use repetition at all in some
contemporary musical pieces. To understand repetition then is to gain deep insight into
the workings of music itself.

There appears to be a deep connection between music and natural language in that
both of these are built by an ordered, hierarchical structure of smaller units — these
could be words in a sentence or notes in a melody. While there is a lot of discussion
around the nature of a musical grammar (e.g. Lerdahl and Jackendoff, 1983), what is
clear is that music has some form of long-term dependencies and a complex organisation
between events within it, and that the surrounding context of the events are impor-
tant. Nonetheless, Patel (2003) proposes and provides evidence of a deep connection
of music and language in his shared syntactic integration resource hypothesis (SSIRH),
suggesting that there indeed appears to be a common baseline between both. Despite
this connection however, natural language does not require repetition in its production,
as reiterating words ad verbatim does not carry new information, and so any theory of
musical grammar must include a provision for repetition. Understanding repetition in
music then could reveal more on how such a grammar could function1. This is impor-
tant, as all sound is simply a collection of pressure waves within a medium, but it is a
uniquely human decision to distinguish a particular assortment of these waves that we
experience as being musical, or not. Therefore, to understand what aspects of the signal
makes us call it music reveals some deep inner mechanisms of the human mind, and the
mystery of repetition could lead us in this direction of understanding.

1.2 The Transformation of Sound

1.2.1 Auditory Illusions

Illusions offer a unique opportunity to study the cognitive mechanism surrounding per-
ception — a stimulus of the senses that somehow ‘breaks’ the normal perception of the

1A formal musical grammar system should allow for its own rules to be broken if the rule violation
is repeated enough times.
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source highlights the differences between the human sensor, the brain, and an ideal re-
ceptor. Such effects are of interest to researchers as they allow a chance to probe these
shortcomings in an attempt to understand these discrepancies, and from there construct
models which capture the dynamics of the percept. For example, in the striking Café-
wall optical illusion, perfectly horizontal lines surrounded by offset rows of tiles of black
and white squares appear to tilt the lines sideways. Ultimately, this illusion motivated
theories and a model of how the human retinal system detects and perceives the edges
in an image (Nematzadeh and Powers, 2016).

Illusions extend beyond the optical domain — auditory illusions appear when the listener
hears something that does not exist in the audio signal, or if the sound they hear
shifts from one thing to another. For example, in the missing fundamental illusion,
the brain can hear a fundamental frequency in an audio signal made up of only its
harmonics frequencies (Licklider, 1951), and through this phenomenon neural models of
pitch perception have been proposed that account for this illusion (e.g. Chialvo, 2003).
Cognitive phenomenon such as the McGurk effect relate both hearing and vision in
speech recognition (McGurk and MacDonald, 1976), such that mismatched ques from
both sensors leads to the experience of a third, different sound, and this has led to
further research in the multi-modal aspects of speech recognition. Diana Deutsch, a
predominant researcher in the psychology of music, has discovered several music related
illusions, such as the Octave Illusion (Deutsch, 1974a), Scale Illusion (Deutsch, 1974b),
and the Tritone Paradox (Deutsch, 1986) that reveal inaccuracies in the human pitch
perception of sound. Through these anomalies, we can begin to understand more of the
auditory system, and how the brain processes and categorises what it hears.

1.2.2 Repetition Based Illusions

Several auditory illusions occur when a sound source is repeated multiple times in a row
and a perceptual shift occurs, where subsequent reiterations of the sound are perceived in
a very different manner than on the original play-through. In the verbal transformation
effect (VTE, Warren and Gregory, 1958), when a short word is repeated quickly without
pause or modification, the listener begins to hear other words from the sound. For
example, the word ripe transforms and flips between similar sounding words such as
right, white, bright and even bright-light. This effect is quite unstable as the alternate
words tend to switch around on each loop, or the original word returns to the listener.
Another related effect is semantic satiation, first studied by Bassett and Warne (1919).
Here, the word is repeated in a similar fashion but instead of transforming into other
words, the sound decomposes into almost nonsensical, incoherent sounds such that the
original word sounds alien and unfamiliar, and even loses all meaning. Unlike the VTE,
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this perceptual shift is quite strong and lasts for some time after the priming phase
before the word begins to sound normal again.

In both effects, the act of repetition recontextualises the sound — without the support
of the surrounding context of other words and utterances, the sound is free to take on
different meanings, or even lose all definition completely. Semantic satiation occurs when
the brain no longer focuses on the meaning of the word due to a ‘fatigue’ of the neural
pathways (Jakobvits, 1962), and instead shifts the attention to the component sounds
of the word itself (Margulis, 2013a). While these two illusions pertain to language they
do not carry across to music. A short melody does not descend into musical nonsense
on repetition, nor flip between alternate melodies in the same manner, but if anything it
becomes stronger and perhaps even more ‘musical’ than at first (Margulis and Simchy-
Gross, 2016).

1.2.3 The Speech-to-Song Illusion

While editing her audiobook on musical illusions, Diana Deutsch accidentally looped a
short sentence of her voice only to discover that it began to sound as if she was singing the
phrase “sometimes behave so strangely”, when at first she was merely talking naturally.
This led her to the unearth an effect that she later named as the Speech-to-Song illusion,
and was first presented on her CD (Deutsch, 2003). The effect is simple — a short
stimulus of a few spoken words intended to be heard as speech is repeated, and after
around three or four loops sometimes the phrase is heard as if the speaker is singing.
In relation to the other repetition based illusions, this seems to be closer to semantic
satiation rather than the VTE, as the effect is stable and lasts a long time2, but instead
of losing meaning, something is actually gained — namely, music. Crucially however,
this does not happen for all stimuli, and later studies find that this transformation is
stronger for some sounds, and for different participants.

In their first study, Deutsch et al. (2011) asked participants to rate how song-like they
perceive the phrase before and after multiple repetitions, and found that most partici-
pants agreed that a transformation into song occurs, and this effect is quite dramatic.
A few different manipulations to the audio recording was tried — by either altering the
transposition of the speech or jumbling the syllables after each repetition destroyed the
effect, leading to the conclusion that the illusion requires that each loop must remain
intact. Participants were even asked to sing back the song that they heard, and it
was found that not only did everyone hear the same melody, but when reproducing the
sung phrase they were much more accurate in faithfully imitating the original pitches of

2i.e. once the melody is heard, it persists for a while and cannot be ‘unheard’ (Groenveld et al., 2019)
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the recording, compared to a control group who only heard the segment once without
repetition.

After the first documented account of the effect by Deutsch a long line of enquiry into
details of the nature of the illusion began. An influential study by Tierney et al. (2012)
confirmed through fMRI scans that there is heightened activity in areas of the brain
associated with pitch processing and song production when participants experience the
illusion, showing that speech can really be heard as song. They also found that the set
of transforming stimuli tended to have more stable, non-fluctuating F0 pitch contours
than the speech that did not illicit the illusion. This result was confirmed in a later set
of experiments from the lead author, where stimuli were digitally manipulated to flatten
the pitch contours during the syllables, and found these vocals were rated higher on a
scale of song-likeness (Tierney et al., 2018a). In this same study, they also found that
the melodies contained in the transforming stimuli tended to be similar to those found
in Western music, according to some probabilistic model of melody.

It was reported soon after the discovery of the illusion that it exists in multiple lan-
guages, such as is German (Falk and Rathcke, 2010) or in tonal languages, such as
Mandarin (Zhang, 2010). These results were followed up by Margulis et al. (2015) who
hypothesised the effect will be reduced if the listener does not understand the language,
or finds it hard to pronounce such that they cannot ‘sing-along’ in their head. However,
they found that this only boosted the effect, leading to the conclusion that by not un-
derstanding the semantic meaning of the words the listener focuses on other aspects of
the sounds themselves, such as pitch, timbral or rhythmic qualities, and thus can find
the music sooner. An experiment by Leung and Zhou (2018) saw that the semantic and
emotional content of the spoken words had no bearing on the illsion, and this was taken
to the extreme in the experiments of Tierney et al. (2018b), who created sounds that
were simple tones which recreated the pitch contours of transforming stimuli were also
rated as transforming into music. The effect can be experienced by people of different
musical experience (Vanden Bosch der Nederlanden et al., 2015).

While there is ample evidence of pitch playing an important role in eliciting the illusion,
the influence of rhythm and meter is less clear. Falk et al. (2014) saw mixed effects — a
regular accent distributions only seemed to effect the time before the illusion is experi-
enced, and not the probability of its occurrence. However, in a second experiment they
found evidence that durational contrasts of accented and unaccented events is indeed
connected to the illusion, suggesting rhythmic meter facilitates a perception of music.
On the other hand, Tierney et al. (2018a) reported no change in ratings between control
stimuli and those that were manipulated to have more isochronous timings of syllables,
perhaps indicating that the role of rhythmic aspects is not as straightforward effect as
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pitch and other musical ques. It seems clear that the illusion reveals something about
how the brain distinguishes speech from song, and although it takes a few repetitions
for a listener to perceive it as song, there are some similarities in features between trans-
forming stimuli and recordings of singing, most notably stable notes and meter. As the
perception of song is not immediate, it seems as if speech and song are not distinct
categories, and that the stimuli which transform lie on the blurred boundary between
them.

1.2.4 Beyond Speech and Song

The natural followup of Speech-to-Song is to ask if the effect extends beyond spoken
word, and if non-vocal sounds can become musical through repetition as well. It seems
reasonable that this can also happen, as incorporating recorded samples of sounds and
noises has been utilised by musicians as a musical technique for decades, however such
usage has attracted little academic interest. Nonetheless, Simchy-Gross and Margulis
(2018) ran the same experiment setup as Deutsch et al’s original experiment but replaced
the vocal stimuli with environmental sounds instead. These were typically sounds that
one would not consider to be musical, however after several reiterations of the sound
participants rated them higher on a scale of music-likeness. Recently, Rowland et al.
(2019) also confirmed the illusion extends to water dripping sounds. Contrasting with the
rest of the speech to song results however, they found that randomly ordering segments
of the sound did not break the illusion, suggesting that environmental sounds do not
have to played back exactly to illicit the perception of music. This implies the Speech-
to-Song illusion a subset of a broader phenomenon of Sound-to-Music, which could even
be contained in a larger space of Sound-to-Something of sound transformation illusions.

1.3 Thesis Overview

The main goal of this research is to analyse the Speech-to-Song phenomenon in greater
detail by taking advantage of the largest collection of audio stimuli and data on the
topic to date. Through the use of computational techniques, we analyse the data on a
large scale to distil which characteristics seem to quantitatively impact the perception
of musicality in a repeated sound, and distinguish how these features differ between
those that transform and those that do not. Considering the importance of repetition
in music, the illusion offers a unique opportunity to study the role of it from a cognitive
perspective, and work towards narrowing down the aspects of audio that get teased out
by repetition that causes the perceptual switch can lead to further clues to what makes
music music.
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To begin, in Chapter 2 we outline a method to automatically extract the melody that a
listener could perceive with the audio signal that we will use to compute some character-
istics on this melody. The incentive to automate the transcription of the song is so that
we can analyse many more stimuli in a large scale survey, enabling the use of techniques
from data science. Previous studies that looked at music theoretic traits used either
hand annotated stimuli, or a rudimentary algorithm to measure the notes of the melody
— our automatic method offers a slight improvement over more naive approaches to this
task. We then extend this method with a Bayesian approach to search for an similar,
more ‘musical’ melody. With this new melody, we can compare it to the one that was
extracted to measure directly how likely it is to be found in a musical composition.
This feature, along with many others are outlined in Chapter 3. We describes a series
of algorithms to make measurements that we take directly from the audio itself and
the note sequences to produce a feature vector that represents the audio stimulus. We
include such features that have been discovered in past work, along with a set of new
and novel measurements to test other aspects of the melody. It will be from these traits
of the sound that we will further analyse and attempt to predict the behaviour of the
participants and the probability of the illusion occuring.

Chapter 4 collects the stimuli along with human rating data from a past experiment and
prepares it for analysis. This involves aggregating the final scores given by listeners on
how strong the illusion materialised, filtering the data to obtain higher quality results,
and devising a scheme to apply a binary label (transforming or non-transforming) for
classification models to predict. We then test if there exists any direct correlations
between feature and transformation scores, and measure if there exists any significant
differences in features of the transforming and non-transforming stimuli. We fit several
models to the data in Chapter 5, ranging from simple linear models, to non-linear kernel
based methods, and then to ensembles of models, and evaluate their performance at
predicting the labels. If the models have success, then we know that there is some
information contained in the feature vector that facilitates the prediction that gives us
a clue in what contributes to the effect.

In Chapter 6 we report an experimental setup that we conducted with a whole new set
of stimuli to collect fresh empirical data, and evaluate how effective the models predict
these new sounds. The stimuli is a diverse collection of spoken word compiled from a
range of speaking styles, and in three different languages. We also include non-speech
sounds to assess how well the models generalised to these novel sounds, despite the
algorithms having been optimised for vocals. This data is analysed and compared to
that of the previous experiment to confirm if the trends hold in this new data. Finally, a
summary and discussion of all the methods, results and main conclusions can be found
in Chapter 7.



Chapter 2

Melody Extraction

I haven’t understood a bar of music in my life,
but I have felt it.

— Igor Stravinsky

2.1 Audio Analysis Methods

For the automatic and computational approach to music analysis we turn to the field of
music information retrieval (MIR). This area of research combines methods and theories
from signal processing, informatics, psychoacoustics, musicology, and machine learning
to develop algorithms to accomplish many tasks that are of interest to researchers,
commercial entities and consumers of music. Typical uses for such algorithms include
music classification (Fu et al., 2011), harmonic and tonal analysis (Ni et al., 2012), genre
detection(Li et al., 2003), track identification (Mohri et al., 2010), and recommendation
systems (Rosa et al., 2015) to name just a few. We are interested here in the task of
automatic music transcription (AMT), whereby an annotated musical score is generated
from a raw audio signal that represents the melody of the music.

This is a vary active area of research with many applications, made apparent by the
sheer number of articles published on this, and the availability of software and services
on the market that accomplish this task (Chordify, Melody Scanner, ScoreCloud and
Tony are just some of many). They utilise a range of algorithms and techniques, but
mainly rely on first extracting fundamental frequencies of the notes and sounds, then
some timing information of musical ‘events’, and finally some post processing to produce
the final transcription (for an overview of AMT see Benetos et al., 2013) Most algorithms
are optimised for instrumented music rather than the human voice, by assuming pitch is

9
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strongly present in the audio signal and that note pitches and timing fall on some grid
(in a piano roll style representation). Even in the cases of transcribing sung melodies by
inexperienced singers (for example in ‘query-by-humming’, see Ghias et al., 1995, Haus
and Pollastri, 2001), it is assumed that the singer is actively attempting to produce a
salient, reasonably accurate and stable melody. This is not the case in natural speech
where there is no intention from the speaker to follow a melodic line and so pitch
loosely fluctuates (which in the case of tonal languages provides additional semantic
information). Therefore, to extract a melody from these audio clips requires adapting
the methods and assumptions, and designing heuristics to identify a possible melody
that could be perceived by a listener.

The field of phonetic research provides useful tool kits for analysing speech computa-
tionally. As we are interested in the melody within vocal stimuli in our study into the
Speech-to-Song illusion, identifying the syllables that make up the rhythm and notes
is a well researched area with established methods to accomplish these tasks in vocal
analysis. Praat (Boersma and Weenink, 2012) is an open-source software package the
contains a vast array of algorithms and measurements to analyse (and manipulate) all
facets of speech, and has become an industry standard within the community. Partic-
ularly, we make use of two algorithms from this tool kit — the first to extract a pitch
contour of the fundamental frequency (also called F0) over time, and the second to get
the intensity of the audio, also over time.

2.2 The Melody Extraction Algorithm

In order to make correlations and inferences on the melody contained within the audio
sample it is necessary to extract from the source an accurate set of notes, with their
start times, lengths, and pitch values. With this information, measurements about the
harmonic qualities of the melody can be made, alongside rhythmic information and pitch
salience. However, while the data set on hand is modest in size, manually transcribing
the melody information for each audio sample would be unfeasible. It is important to
obtain an objective measurement of the melody, as not all listeners necessary perceive
the same notes, so an automatic method is less subjective. Moreover, as the goal is
to produce an algorithm that can identify new material from a large set of potential
stimuli, an automatic process to accomplish this task is desirable. As the material of
the study is entirely on the Speech-to-Song illusion, we will assume that the source sound
is that of human speech, and not the more general goal of identifying melody from any
sound source. This means taking vocal features as indicators of melody and rhythm,
and optimising parameters to best fit these, and to use tool kits optimised for vocals.
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The foundation of the process described here is based on the thorough (unpublished)
work of Cornelissen (2015), who attempted to solve the problem of melody extraction
in normal speech for studying the Speech-to-Song illusion. The algorithm first detects
when the notes occur, then finds the melody that best fits given the pitch contour. The
following presented here builds upon his method with some modifications and improve-
ments.

2.2.1 Problem Statement and Definitions

An acoustic stimulus is divided into n discrete time steps, such that the time between
steps is sufficiently short. Let p = {p1, p2, . . . , pn} be the F0 pitch contour in Hertz
obtained from Praat1 of the sample at each time step, where pi = 0 when there is
no pitch information (e.g. during moments of silence or noise where there is no F0
frequency). Let I = {I1, I2, . . . , In} denote the measured intensity values of the signal
(measures in dB relative to 2 · 105 Pascal) over the same time steps. An example of p
and I are plotted for a stimulus in the central plot in Figure 2.1. It is the task of the
algorithm to compute the melody from these two vectors of information alone.

Let t = {t1, t2, . . . , tN} be a sequence of N individual note values (as its fundamental
frequency in Hertz) that make up the complete melody that we are attempting to extract.
The start (onset) times of these notes forms the set o = {o1, o2, . . . , oN}, and their last
time steps l = {l1, l2, . . . , lN}. Therefore, note ti starts at time step oi and ends at
time step li. Grouping these sets into the tuple M = 〈o, l, t〉 forms a representation of
the extracted melody. Furthermore, the set si = {poi , poi+1, . . . , pli} ⊆ p contains all
the pitches that make up the note ti (i.e. the F0 contour during note i), and these are
collected of every tone to form the set S.

Therefore there exists two unknown functions — Λ : I,p 7→ o, l that segments and
identifies when notes are detected in the audio sample, and Γ : si 7→ ti that gives the
perceived tone ti of note si from the pitch contour within it. The goal of this section is
to estimate these functions.

2.2.2 Note Segmentation

The first step to extracting the melody is determining where the notes occur within the
audio signal. While note boundaries are often easily distinguished in human listening,
automatically identifying these from the audio signal alone is not trivial — for example
simply segmenting the notes by unpitched time steps (i.e. where p = 0) is not sufficient,

1We use the default settings for this algorithm, and for all other Praat measurements.
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Figure 2.1: The raw audio signal (top) is reduced to intensity and pitch information
(middle plot). The lower section shows the various steps of the note segmentation
algorithm Λ′: from identifying the peaks, two stages of filtering, deducing the note
boundaries and finally the segmented note regions. These blocks correspond to the

nine syllables of the phrase “but they some-times be-have so strange-ly”

as there may be multiple notes over a continuous pitch contour (such as glide from one
stable note to another).

Typically in practice this task is accomplished by one of two methods: either segmenting
by amplitude information or by pitch information (McNab et al., 1995). The former is
often simpler to implement, but can fail if the notes are not acoustically isolated (i.e.
when there are no brief dips in intensity between note events), while the later works
well if the pitch contour is stable and not fluctuating during the note duration (e.g. in
the presence of vibrato). More recent transcription algorithms for singing use hidden
Markov models (e.g. Ryynänen and Klapuri, 2006), where note events are identified
from multiple features, including dynamics of the F0 pitch curve, onset strengths, the
detected vocal accents and salience (the prominence of the F0 pitch). As our data deals
mostly with speech rather than singing or instrumentation, we take an approach that is
less susceptible to unstable pitch contours.

To determine when notes are voiced within speech, it is important to recognise which
aspect of the vocals align to the notes perceived such that these points can be identified
automatically. The most salient part of a word is the vocalic part, specifically where
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the nucleus of the syllable occurs. This is typically (but not always) where the vowel
of the syllable lies, and hence to segment the notes is to segment the nuclei of the
speech source. De Jong and Wempe (2009) outline a method to make this segmentation,
however Cornelissen improves on this algorithm and reports success on the identification
of note boundaries. Therefore we use this, as outlined below.

The algorithm will estimate the unknown function Λ, that we denote as Λ̂, and has four
hyper-parameters: maxDip, minDipBefore, minDipAfter, and threshold. It is these
hyper-parameters that are optimised in the parameterisation stage in Section 2.2.4.
First, the time steps τ = {τ1, . . . , τm} of all local maxima of I are found. Then, each
peak at time step τi are removed from τ to form τ ′ if any of the following conditions
are met:

Iτi < threshold

∀τ : τi − ε ≤ τ < τi + ε, pτ = 0

|Iτi −min({Iτ : τi ≤ τ < τi+1})| < maxDip

The first condition checks that the peak is not too quiet, and the second condition ensures
the pitch is voiced by checking if there is some pitch information available around the
peak for some small margin ε2. The third condition checks that the peak is prominent
enough relative with the next peak3, with this accounting for slight fluctuations in the
intensity during the nuclei.

This reduced set τ ′ of candidate peaks is filtered once more (τ ′′) to find the most
significant peaks by the following two conditions:

|Iτi −min({Iτ : τi−1 ≤ τ < τi})| < minDipBefore

|Iτi −min({Iτ : τi ≤ τ < τi+1})| < minDipAfter.

These conditions are similar to before, where peaks of low prominence compared with
neighbouring peaks are removed4. Two stages of filtering avoids the algorithm being too
‘greedy’ that might cause some of the peaks to be discarded too early in the procedure.

Since τ ′′ are the time steps to the peaks of the syllables, it remains to compute the actual
starting (and end) points of the syllable, which will become the final note boundaries.
This is a simple process of finding the local minimum of I between two sequential peaks
in τ ′′. For the very first peak, it is assumed the syllable starts when I is first greater

2If this pitch information actually belongs to a neighbouring syllable, this will be realised in later
steps of the algorithm

3In the edge case where i = |τ ′| and thus there is no next peak, this condition is not tested.
4Again, in the case of no previous or subsequent peak (when i = 1 or i = |τ ′′|), then only the valid

condition is checked.
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than 50, and similarly for the final peak the note is assumed to end when I is less than
50. With this, we have a set of note boundaries η = {η1, η2, . . . , ηm}.

Finally, S is formed by collecting si for each pair of note boundaries ηi, ηi+1 and taking
all the values of p that fall between these time step boundaries. If si = ∅ then it is
excluded from S. This concludes the note segmentation algorithm.

2.2.3 Note Extraction

The exact nature of function Γ that maps the frequencies to tones is unknown, as pitch
perception is an ongoing endeavour of psycho-acoustic research (e.g. Jacoby et al., 2019).
While spectral decomposition to find the fundamental frequency of a sound source is
standard, the actual perceived tone is far from trivial: harmonics, overtones, timbre,
salience and loudness are just some of the aspects that can affect the identified pitch.
There are even individual bias at play, and that two different listeners may even disagree
on which exact pitch they hear. Nonetheless, we attempt to estimate this process with
a rule-based system that outperforms a naive baseline, and improves on previous work
of Cornelissen (2015).

For each note si we wish to extract a candidate tone ti that will be perceived from the
pitches. As these pitches are almost never completely stable, the function Γ̂ must handle
all possible pitch changes and fluctuations.

A reasonable baseline, and the function used by Cornelissen, is to simply take the mean
of the pitch during the note, i.e. t̂i = s̄i. This has the advantage of mitigating the
effects of vibrato or other fluctuations around the main pitch, however, it is susceptible
to pitch transitions when the pitch contour changes from one note to the next which
pulls the mean pitch away from the perceived value. An example of this can be seen
in Figure 2.1, where the second last note starts with a stable pitch but and drops quickly
at the end as it transitions to the final note, and so the mean would under-estimate the
pitch. In some cases, the pitch of the note is constantly climbing up or down throughout
the time of the note (see the seventh note in the same example), but the transcription
of such a note is typically not in the centre where the mean would estimate it to be.
This can be improved somewhat by simply removing the end points of si, or by taking
the mean of the the most stable regions by estimating the first derivative. This later
strategy is still far from ideal — in cases where there are two stable regions with a large
jump between them, this would still guess a note in between the two correct pitches. In
such a case, it would be prudent to distinguish this as two separate notes. Figure 2.2
illustrates a typical stimulus with its transcription, along with the notes obtained by
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taking the mean of the stable regions of si, and shows that a more robust method is
required to obtain a satisfactory representation of the melody.
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Figure 2.2: Comparison of the transcription (red lines) versus the stable mean pitch
note extraction method (black lines). The note at 0.35s shows how this approach fails

in cases where the pitch contour transitions from one note to another.

The proposed algorithm requires three hyperparameters: minLength, unstable and
maxUnstable that are also parameterised in the process described in Section 2.2.4. For
each si in S, the following process is carried out to find t̂i:

Let s′i = {|pj − pj+1| : pj , pj+1 ∈ si}, i.e. the absolute first difference of the pitch values
of the note si.

1. if `(si) < minLength, (where `(·) is the length of the note in seconds), then no
note is extracted

2. if s̄′i > maxUnstable, then t̂i is the mean of the final half of si

3. otherwise t̂i is the mean of the set of pitches during the most stable portion of si,
which is the largest continuous subset of s′ such that each element of this subset
is less than unstable.

In other words, if the note is very unstable, take the mean of the final portion of the
note’s pitches, otherwise take the mean of the largest, flattest part of the note’s pitch
contour. The second case will estimate the pitch from the final part of the note’s pitch
contour, as it seems the case that transcriptions of glissando notes tend to put the note
value at where the contour ends.
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This algorithm Γ̂ : si 7→ t̂i in combination with Λ̂ completes the melody extraction
process. We continue by parameterising these two processes to get the most reliable
algorithms.

2.2.4 Parameterisation and Evaluation

Across the two algorithms, there are seven free variables that need to be found such
that the algorithms match as close as possible with human perception. Optimising the
parameters involves minimising a loss function that measures a notion of ‘distance’ of
the extracted melody of a stimulus from the ground truth transcription that was labelled
by a human listener.

For evaluating the extraction algorithm, we have a modest collection of transcriptions of
some number of stimuli. These transcriptions were made by Cornelissen in his essay to
evaluate the segmentation and note values extracted with his implementation, and so will
be used here too. There are a total of 50 annotated stimuli where the emergent melody
is notated by start and end times of perceived notes, along with the corresponding pitch
value. These stimuli are from a larger collection of 300 speech samples used in a previous
experiment on the Speech-to-Song illusion (described later in Section 4.1), and most of
them are speech samples that transform. Melodies were transcribed to be played on a
keyboard in 12 tone equal temperament tuning (with reference pitch A4=440Hz), so for
a fair evaluation the notes extracted from the algorithms should be quantised to their
nearest note value on such a tuning system. Quantisation is also required in Section 2.3,
so we detail the conversion now.

To quantise a tone t (measured in Hertz) to its nearest note, first it is converted to its
MIDI value m with (2.1), then m is rounded to the nearest integer, then converted back
to frequency f with (2.2):

m = 69 + 12 · log2
t

440Hz (2.1)

t = 2(m−69)/12 · 440Hz. (2.2)

It should be made clear this quantisation step only affects the note value, and not the seg-
mentation (timing) of the notes. Temporal quantisation where onset times and lengths
are snapped to a discrete grid is a technique used in automatic music transcription to
iron out expressive timing in a musical performance — as the transcriptions are not
assumed to align to a musical metre, this is not an issue for our purposes.

As acknowledged earlier, a weakness of the pitch measurement can introduce octave
errors within the melody, and where possible we try to avoid any measurements that are
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sensitive to these inaccuracies. This is the case for the loss function — the algorithm
is not punished for being a whole octave away, since if the pitch extraction had been
accurate to the human transcription it would have been correct.

Fortunately, a rather simple transformation of the note values can project them into
a space where this is not a problem. Since any octave of a note with frequency f (in
Hertz) is of the family of frequencies f · 2k, k ∈ Z, by taking the logarithm with base
2 then octaves of the original frequency can be identified as being an integer distance
away in this transformed space5. That is, frequencies f1 and f2 are octaves of each other
if and only if log2(f1) = log2(f2) + k for any k ∈ Z. By taking modulo 1 on both sides
simplifies the condition further: log2(f1) mod 1 = log2(f2) mod 1 if and only if f1 and
f2 are octaves of each other.

In this space, distance can be formulated by the following. Let

δ =
∣∣∣ log2(f1) mod 1− log2(f2) mod 1

∣∣∣,
then:

d(f1, f2) =

δ if δ ≤ 0.5

1− δ if δ > 0.5.
(2.3)

Although quite technical in its formulation, this distance metric6 has a simpler, geometric
interpretation: the values of (log2(f1) mod 1) and (log2(f2) mod 1) are points around
a circle with unit circumference, and so d(f1, f2) is the shortest distance along the
circumference between the points. Therefore, the furthest two points can be is 0.5, (i.e.
half an octave).

Let M = 〈o, l, t〉 be the transcribed melody (with onset time, notes end times and note
value), and M̂ = 〈ô, l̂, t̂〉 be the estimated melody (the number of notes in both might
not be the same), then the loss function L(M ,M̂ ) that evaluates the extraction be as
follows: Initiate loss as zero, then for each time step 1 ≤ i ≤ n where the transcription
M indicates there is a note tj , if M̂ also indicates a note t̂k, then loss is incremented
by their distance 2× d(tj , t̂k). If M̂ does not indicate a note, then loss is incremented
by 1. Finally, loss is normalised by dividing it by total number of time steps where M
indicates a note as being sounded, such that loss ∈ [0, 1]

It should be noted that the loss function is not increased when the algorithm makes
a false positive prediction at a time step, although this can certainly be implemented

5This makes the unison interval (i.e. when two notes the same) to be the ‘zero-th’ octave.
6It is easy to see that d satisfies the conditions to be a proper distance metric: d(x, y) ≥ 0, d(x, y) = 0

if and only if x = y, d(x, y) = d(y, x), and d(x, z) ≤ d(x, y) + d(y, z) (the triangle inequality)
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to make a stricter loss. However, from observations of the predictions it was noticed
that the algorithm tended to over-estimate the length of a note compared with the
transcriptions (this is also demonstrated by the third and fourth note in Figure 2.2).
This could be for a couple of reasons, such as the quality of the transcription (more
focus on getting the note onset time accurate and less emphasis on its length), and the
inherent weakness of the segmentation algorithm.

With a loss function defined, the procedure to evaluate the parameters is straight for-
ward: for any set of parameter values predict the melodies of all 50 stimuli for which
there exists a transcription, compute the loss for each one and average the losses to
obtain a final score from 0 to 1, with 0 being the perfect loss. Using this score we can
compare different parameter sets and thus find the optimal values that minimises the
loss.

Since there are only seven parameters and evaluation is quick, a simple grid search
that steps through all the combinations of values over their ranges is performed and the
performance is evaluated with this loss function. Initially the grid search was quite coarse
over a large range of values to estimate a ballpark set of values, then progressively finer
grained searches narrows in on the best possible minimum. This procedure yielded the
parameters is Table 2.1. For notes segmentation, it appears that imposing a minimum
intensity threshold reduces the effectiveness of the algorithm (indicated by threshold =

0), and that the small value for maxdip suggests only the weakest peaks should be
dropped.

parameter value description

maxDip 0.5
 intensity peak local prominenceminDipBefore 2.1

minDipAfter 0.5
threshold 0.0 minimum intensity peak
minLength 0.05 minimum length (in seconds) of a note
unstable 4.5

}
stability thresholds on deciding which part of the
note’s pitch contour to use when taking meanmaxUnstable 8.8

Table 2.1: Optimal values found for the parameters used by the note extraction
algorithms Λ̂ and Γ̂.

Table 2.2 summarises the losses for a naive baseline that predicts a single tone equal
to p̄ for the complete length of the stimuli, using the mean pitch (where ti = s̄i), the
stable mean method (where the mean of only the most stable portion of the note’s pitch
contour is used), and the extracted melody using the full algorithm Γ̂, both before and
after quantising the notes to MIDI values.
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method loss
normal quantised

naive baseline 0.3876 —
mean (all of si) 0.2464 0.2385
mean (stable regions of si) 0.2382 0.2306
rule based 0.2250 0.2145

Table 2.2: Evaluation of note extraction methods, before and after quantisation.
Lower loss indicates better performance.

First, it can be seen that the stable mean pitch method is already an improvement over
the basic mean method. The current method performs significantly better than the
naive baseline, and modestly outperforms either of the mean pitch methods. While at
first it seems unsurprising that quantising the notes matches the transcriptions better,
this does suggest also that the unquantised notes values were initially sufficiently close
to the ground-truth values — a weaker algorithm would have a 50% chance that the
rounding would shift the note closer or further from the true note.

We have outlined and parameterised the two algorithms which together recover a melody
from the spoken word. Cornelissen then takes a next step to use a Bayesian approach
to find the most likely musical note sequence, given melody we have just extracted.
However, we separate this extra step and use this alternate, Bayesian melody as a way
of objectively comparing how musical the ‘raw’ melody we extracted is, and use this
later (Section 3.2) as a possible feature in identifying illusionary stimuli.

2.3 Bayesian Melody Search

Once we have a sequence of notes, the natural question to arise in a study of music
perception is simply ‘how musical is this melody?’ Such a question is perhaps ill-defined
in an objective investigation — definitions of musicality are very subjective and prone
to critiques ranging from cultural and historical factors to more individualistic and
personal aspects. This has long been a challenge in musicology, where any assumption
of the universalities of music are often met with criticism, so researchers must tread very
carefully when making any such claim.

One perspective to take the musicality question is in a comparative sense, where we
can ask a similar, more quantative question of ‘how is this melody like other typical
melodies?’ This calls for a statistical approach that involves developing a model that
capture aspects of musical phrases that we can apply probability theory to, such that
we can measure how likely a sequence of notes might appear in some music theoretic
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framework. Rather, we compare the extracted melody to one that is more typical to
obtain a distance of how close the melody is to a musical one. This method is the
one described by Cornelissen (2015), however we contribute a set of parameters for the
model and outline a stronger search method.

2.3.1 Method Outline

The tone sequence t given the set of syllable frequencies S can be modelled naturally
by taking a Bayesian approach:

P (t|S) =
P (S|t) · P (t)

P (S)
∝ P (S|t) · P (t). (2.4)

As we are trying to find the most likely tone sequence t given the syllable information S,
we maximise (2.4), in other words the maximum a posteriori estimate t̂MAP is given by

t̂MAP := arg maxt
(
P (S|t) · P (t)

)
. (2.5)

The first part of the right hand side of (2.4) is the likelihood — the probability of
observing the noisy syllables S for a given tone sequence. A simple model assumes each
frequency pj ∈ si is (independently) drawn randomly from a normal distribution centred
around ti with some precision β. Therefore, P (S|t) can be formulated as

P (S|t) =
N∏
i=1

∏
f∈si

N (f |ti,β−1) (2.6)

where N (x|µ,σ2) is the probability density function of the normal distribution with
mean µ and standard deviation σ at x. The independence assumption in the likelihood
is not ideal — clearly the frequency sequence is highly dependent on the previous time
steps, and so could better be modelled with some Markov Chain or Random Walk.
However, for this purpose, the simplification is sufficient.

2.3.2 Distribution of Melodies

The second part of (2.4) denotes the prior probability of t, that is the probability of
observing t from the distribution of all tone sequences. Of course, such a distribution
over all melodies is unknown, however there exists several statistical models of music
that attempt to capture this. For starters and to set a naive baseline, we could assume
that P (t) is uniform, and so the posterior simplifies to P (t|S) ∝ P (S|t) and thus t̂MAP
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would involve maximising the likelihood function in (2.6). This results in

t̂MAP = {s̄i : 1 ≤ i ≤ N}, (2.7)

which estimates the tones as the mean of the pitches during the syllable.

A more sophisticated probabilistic model of music is proposed in Temperley (2008) in
his study of melody perception. The model makes basic assumptions on how notes are
distributed given some previous context and key signature, and is able to capture much
of the structure of the music that he fitted the model to, being able to predict the
notes based on previous contexts and identify key signatures. In his paper, he applied
the model to music from the Essen Folk Song collection (Schaffrath, 1995) to analyse
typical melodic patterns in Western folk music. It works as follows:

1. First a central pitch c is drawn from a Normal distribution N (µc,σ2
c ). This is

somewhat like the ‘tonic’, but is generally the mean pitch over the entire phrase.

2. Each note is drawn from a range centred on c, with shorter intervals being more
probable. This is modelled with a range distribution N (c,σ2

r ).

3. Each note ti (for i > 1) are also constrained by it’s proximity to the previous
note ti−1, again with larger intervals being less probable. This is another normal
distribution N (ti−1,σ2

p).

4. Finally, the probability of a note is given by one of the 24 key profiles k, where
notes outside the key will be less probable.

Formally, these conditions can be combined as follows:

t1 ∼RK(c, k) ∝ N (c,σ2
r ) · K(k) (2.8)

ti ∼RPK(ti−1, c, k) ∝ N (c,σ2
r ) · N (ti−1,σ2

p) · K(k) (2.9)

where K(k) is the probability distribution of key profiles. Therefore, the joint probability
distribution of the tone sequence t is obtained by marginalising over keys k and tonal
centers c:

P (t|c, k) = P (t1|c, k) ·
N∏
i=2

P (ti|ti−1, c, k) (2.10)

⇒ P (t) =
∑
k

∫
c
P (c) · P (k) · P (t|c, k).dc. (2.11)

While this model is rather simple, it remains computationally intractable, mostly due to
the itergral over c. However, since (2.11) is used in the maximisation of (2.5), we do not
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need to search over all c — it would be sufficient to fix c to some sensible value based on
S. The natural choice is to approximate µc by taking the mean of all (non-zero) pitches
in p, i.e.

ĉ = p̄, (2.12)

as the maximising value would be very close to this mean. Therefore, (2.11) reduces to

P (t) =
∑
k

P (k) · P (t|k) (2.13)

=
∑
k

P (k) ·
N∏
i=1

P (ti|k) ·
N∏
i=1
N (ti|ĉ,σ2

r ) ·
N∏
i=2
N (ti|ti−1,σ2

p). (2.14)

All that remains is to estimate the variances σ2
r and σ2

p, and the choice of key probabilities
and the distribution of notes under this key. The variances can be computed rather easily
from the transcriptions themselves using an unbiased estimator. We find these values
to be σ̂2

r = 20.61 and σ̂2
p = 21.15. These differ from the values that Temperley himself

found in his corpus, although generally they agree (he estimated range variance between
17.0 and 29.0 and proximity variance between 7.2 and 70.0, depending on which dataset
and estimatation technique he used).

2.3.3 Note and Key Calculation

Here we define the probabilities a note falls in a certain key, and the probability of such
a key occurring. Formally, a key is a discrete collection of pitch classes that forms the
basis of a composition, where choice of chords and melodies are typically restricted to
the notes that are within the key, with some notes having more ‘importance’ than others
— essentially how well the notes fit in the context of the key. In theory a key can be
any collection of notes, but we restrict ourselves to the main two keys in Western music,
namely the major and minor keys.

The most typical formulations of P (ti|k) in statistical models of music are defined using
key profiles collected by Krumhansl and Kessler (1982), a pioneering study that discerned
how well all 12 of the chromatic notes fit within a key, based on human listening trials.
Temperley however recomputes these profiles from the Essen Folk Song collection, thus
yielding slightly different probabilities, and this is what we use here. We must map
the tones t to the 12 chromatic notes by quantising them using the method described
in Section 2.2.4. This limits the possible tone sequences to those that can be played on
a piano keyboard.

We denote a key k by the tuple 〈q, r〉, where q is the quality of the key (either major
or minor), and r be the root of the key as a pitch class from 0 to 11, where C 7→ 0,
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pc 0 1 2 3 4 5
name C C]/D[ D D]/E[ E F

P (pc | 〈major, 0〉) 0.184 0.001 0.155 0.003 0.191 0.109
P (pc | 〈minor, 0〉) 0.192 0.005 0.149 0.179 0.002 0.144

pc 6 7 8 9 10 11
name F]/G[ G G]/A[ A A]/B[ B

P (pc | 〈major, 0〉) 0.005 0.214 0.001 0.078 0.004 0.055
P (pc | 〈minor, 0〉) 0.002 0.201 0.038 0.012 0.053 0.022

Table 2.3: Key profiles of the twelve pitch classes (and their names when in C tonic,
i.e. r = 0) for major and natural minor keys. Bold face where pitch class belongs to

the key.

C]/D[ 7→ 1, D 7→ 2 etc7. Therefore the set of all keys is then

k = {〈q, r〉 : q ∈ {major, minor}, r ∈ {0, 1, . . . , 11}}. (2.15)

To label a note and compute its position within a key, it is helpful to convert the tone t
(with frequency in Hertz) of the sound into a pitch space, where changes of one semitone
correspond to a difference of 1 in the pitch space (and thus the octave is repeated every
12 steps): This corresponds to the standard MIDI labelling of notes, which assume
twelve tone equal temperament tuning with A = 440Hz, and with middle C centred on
the value n = 60. The conversion of frequency to MIDI note was defined in (2.1). Pitch
class space contain values in the interval [0, 12), with 0 being the tonic of the key. To
convert the MIDI note m to pitch class pc of key 〈q, r〉:

pc ≡ (m− r) mod 12 (2.16)

A similar conversion was made in Section 2.2.4 to get the note distance, however in that
case a step of 1 corresponds to a whole octave jump, whereas here a step of 1 corresponds
to a semi-tone (of which there are 12 in an octave).

From here, the probability of a pitch class given a key is then a simple lookup of the prob-
abilities derived from the Krumhansl-Kessler values, given in Table 2.3. With P (ti|k)
defined, all that remains is the probability of a particular key P (k). In his model,
Temperley estimated

P (〈q, r〉) =


0.88
12 if q = Maj

0.12
12 if q = Min.

This concludes Temperley’s model of melody.
7We assume for simplicity that pitches with two possible name (e.g. G] and A[) are the same, even

though in music theory they have different functions.
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2.3.4 Search Space

With the components that make the posterior P (t) and P (t|S) defined, we can begin the
search of the optimal tone sequence t̂MAP. Of course, checking all possible sequences is
intractable, but by initialising the search at a reasonable guess and searching the space
in the local neighbourhood of similar melodies will likely find the global maximum.
One option is to start by maximising the likelihood using (2.7), however we make the
natural choice of initialising the search with the tone sequence already extracted by the
algorithm:

tINIT = {Γ̂(si) : 1 ≤ i ≤ N}. (2.17)

The search for similar sequences involves altering the melody note by note and computing
the posterior for each transformation, and taking the sequence that maximised (2.4).
This is done by exploring all possible combinations of transposing notes up or down
by a number of semitones and computing the posterior of this new melody. Limiting
the number of semitones we transpose by to c, for each note there are 2 · c+ 1 possible
values (including no transposition), and given a sequence length of N we have a total of
(2 · c+ 1)N potential melodies that need to be checked. It is easy to see however that
even for a modest length sequence the total number of sequences can grow very fast due
to the exponentiation — for example, with an 8 note sequence and transposing notes up
to a distance of 3 semitones results in nearly 5.8 million combinations that need to be
checked. Even on reasonable hardware this is too many computations to be practical.

There are some exploration strategies that can be adopted to limit the search, such as
only shifting the longest or most salient notes, or dynamically adjusting the choice of c
based on the length N such that the total is feasible. As we are interested in how the
melodic phrase resolves at the end, we choose to limit the search to the final notes of
the sequence. In practice, we check for c = 2, and if a sequence is longer than 6 notes,
we only iterate over the transpositions of the final 6 notes — this results in a maximum
of 15,625 melodies, which takes around 10 seconds to evaluate on an 2.4GHz Intel CPU.



Chapter 3

Feature Engineering

There are no wrong notes in jazz:
only notes in the wrong places.

— Miles Davis

In this chapter, we outline the methods and algorithms to measure information of the
raw audio signal and the melody we extracted from Chapter 2. By making particular
measurements (features) we aim to capture certain characteristics of the sound such
that we can determine which of these are common to the stimuli that transform into
song, and those that do not. This would reveal which qualities of the sound and melody
the brain focuses in on such that the perceptual shift occurs, and ideally uncover some
of the differences between speech and song. Several of the features we describe here
are formulated directly from previous studies, or developed in a way to capture known
results. We also include some new, novel features in the hope our investigations can
expand on the growing set of characteristics that facilitate the Speech-to-Song illusion1.

3.1 Audio Features

The most significant characteristic that previous researchers have found that correlates
with the transformation rating is the stability of the fundamental frequency (F0) pitch
contour. Stable pitches implies that there is some structure or intention behind the
sound — musical instruments typically produce constant pitches (aside from stylistic
fluctuations such as tremolo or glissando), and trained singers hold there target notes
with stability (e.g. Thompson, 2014, found that voice with small variations in F0 indicate
a singing vocals). The method we use is a slight variant of the measurement outlined in

1A full summary of all the features described here is presented in Appendix A.

25
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Tierney et al. (2012), where we take the sum of the average absolute first differences of
the pitch contour of each note2. The measurement is then given by:

stability =
N∑
i=1

1
|si|

li−1∑
j=oi

|pj − pj+1|. (3.1)

Contrary to its name, larger values indicate an unstable pitch track, and a perfectly stable
pitch contour scores zero. If there is a gap in the pitch track (where pi = 0) during a
detected note, then this gap is interpolated to estimate the missing values. Ignoring the
breaks and including the jump across the empty gap will cause spikes in the absolute
difference yielding spurious results3. It should be made clear that these measurements
are made only during the time steps that a note has been identified, and so any large
steps between two distinct notes are not included, as is desired (measurements that
pertain to the jumps between notes are accounted for in later features).

As the pitch contour seems a very important aspect of the illusion (as evident by the
pure tone stimuli of Tierney et al., 2012), measuring the percentage of the sound source
that actually has a detectable pitch might prove indicative — a sound that is very noisy
and does not contain a comprehensible frequency might not transform at all, whereas
one that has a well defined pitch perhaps does. percent pitched quantifies this by
calculating the percentage of time steps where a pitch can be detected:

percent pitched =
1
n

∣∣∣{pi : pi > 0}
∣∣∣ (3.2)

It seems reasonable to assume that the higher proportion of the sound has a pitch, then
it is easy to conclude the audio is music, so we include this here to test if this is the case.
Of course, this measurement is rather sensitive to the algorithm (and its parameters)
that produces the pitch contour. However, this will only largely affect the scale of this
feature, rather than the quality of the measurement. If we make sure that the algorithm
we use remains consistent, this should not pose any major problems.

Another simple measurement is the length of the stimuli — presumably if it is too long
then the illusion will not materialise. As we only want to measure the time when the
sound is audible, length is the time (in seconds) from the first moment I is greater than
50 until the last moment I drops below this threshold. This way, any leading or trailing
silence in the audio file is not counted towards its length.

2Tierney et al. scale this value by multiplying by 100.
3It is unclear how the original authors dealt with breaks in the contour.
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Figure 3.1: Krumhansl-Kessler key profiles for each pitch class (with their interval
name). Non-integer interval values are linearly interpolated between points. Note that

in this model the octave (12, P8) has the same score as the unison (0, P1).

3.2 Melodic Features

Some simple counts and statistics of the notes and the intervals (jumps) between them
have been used in previous studies with some success (such as in the unpublished report
by Graber, 2015). Music is characterised by jumping between notes to form a melodic
contour, a feature less important in adult-directed speech (Corbeil et al., 2013), so they
are included here to assess if these are distinguishing traits. These are num jumps which
counts the number of notes, max jump and mean jump compute basic statistics on the
interval sizes in semitones, and range is the difference between the highest and lowest
note, also in semitones.

Some features also look at characteristics of the final note — last jump is the final
interval size, last note length measures the final note length as a percentage of the
stimulus total length (as defined above), and last note lowest is an indicator variable
the equals 1 if the last note is the lowest note of the whole melody, 0 otherwise. Huron
(1996) found in his analysis of musical phrases that typically the melody is arched-
shaped, with the last notes tending to be the lowest of the phrase. These aim to test
if the melody is characteristic of the resolution of a musical phrase, and where a longer
final note could suggest a completion of the melodic line.

We also make some more music theoretic measurements, namely the fit of the notes to
some key. Several results from previous studies found that notes which fit well to a mu-
sical key are more likely to transform (e.g. Groenveld et al., 2019, Tierney et al., 2018a).
We measure key fit in a similar way as described by Tierney et al., however we modify
the score such that it is invariant to tuning, and that note lengths contribute weights
in the calculation. The procedure is outlined in Algorithm 3.1, where the Krumhansl-
Kessler values are the original found by their study (illustrated in Figure 3.1), and not
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the same as those found in Table 2.3. This measure falls in the range [0, 6.35], with
higher values indicating the melody fits well with some key profile4.

Algorithm 3.1: key fit score calculation
Compute weights w from lengths of notes in t (such that Σw = 1);
key fit 7→ 0;
foreach key quality q ∈ {major, minor} do

foreach tonic note ti ∈ t do
score 7→ 0;
foreach note tj ∈ t do

cj = 12× log2(fj/fi) mod 12;
Lookup key fit score fj of cj from Krumhansl-Kessler profiles for key q.
For non-integer cj , linearly interpolate between the surrounding integer
values;

score 7→ score + fj ×wj ;
key fit 7→ max(key fit, score)

return key fit

Similarly, we look at the intervals of the note jumps and compute a measure on how
‘ideal’ they are, assuming that intervals should be integer valued. Essentially, this scores
the melody on it’s fit to the 12 Tone Equal Temperament tuning system, the standard of
Western music, and how much contesting is required to fit it to this system5. A similar
feature was tested for in the control stimuli of Falk et al. (2014, Experiment 1), where
stimuli were adjusted in pitch to include intervals sizes of 5.5 which does not appear
in any Western musical scale. They found there was a marginally significant effect, so
we generalise and form a measure that quantifies this for any stimuli. For each of the
intervals between each sequential note (in semitones), it is scored by its rounding error
to the nearest interval — from zero if it is ±0.5 semitones from a whole number to 1 if
t is exactly integer. Formally, this function is:

I(ci) = 1− 2×min
(∣∣∣dcic − ci∣∣∣, 0.5

)
(3.3)

where the operation dxc rounds x to the nearest integer. scalar interval is then the
mean of all the interval scores, and so lies in the range [0, 1], where higher scores indicate
closer fit. As this is only computed over the note intervals, this is invariant to a reference
pitch (such that pitching the whole melody away from standard concert pitch will not
affect this score).

4key fit can only be zero if the sequence is empty, and a sequence of only one note trivially scores
maximum fit (since it is tonic of all keys.)

5Just Intonation, an alternate tuning system, might offer a more natural choice here. However, some
of the measures in Section 3.4 will capture the same relationships between notes that this system is
based on (e.g. simple fractions of frequencies between notes).
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Next, we score the melody on the presence of certain melodic intervals that are prevalent
in musical compositions, notably the Perfect Fifth, and the Major and Minor Thirds. As
these are ubiquitous in Western music, their existence within a stimulus could support
the impression of a complete musical phrase, and thus more likely to transform. To
quantify this, a matrix of all note pairs and their intervals is constructed to form an
n×n matrix (for a sequence of length n), where entries i, j is the interval (in semitones)
between notes ti and tj modulo 12. Therefore, if two notes are exactly a Perfect Fifth
apart, this matrix would contain a 7 in one of its entries. From this, i p5, i 3 and i m3

can be directly calculated by finding the maximum of (3.4) over all intervals ci,j , where
c is the interval size we are testing for.

I(c, ci,j) = 1− 2×min
(∣∣∣c− ci,j∣∣∣, 0.5

)
(3.4)

In the case of the Perfect Fifth c = 7, and the Major and Minor Thirds have interval
sizes 4 and 3 respectively. Simply put, i p5 scores 1 if there is a seven in the matrix, 0 if
no entry rounds to a 7, or a value in between that equals 1 minus the smallest rounding
error of an entry to 7, such that a maximum score is obtained when there is a strong
presence of the Perfect Fifth.

Finally, we use the melody found from the Bayesian melody search in Section 2.3 to
compute a distance of the extracted notes to that of a more likely musical phrase.
Given a note sequence t, we compute the Bayesian maximum a prior sequence t̂MAP and
compare them note for note, by summing up their distances using (2.3) weighed by the
notes length to give bayesian distance. This score has a value zero if the extracted
melody exactly matches t̂MAP, and higher values indicate the notes are further from the
more probable sequence, and thus are less likely to be a note sequence found in a musical
composition. Tierney et al. (2018a) used the same model of melody as we have used in
the Bayesian melody search to test if the likelihood of the melody has any correlation
with the probability of transformation, and found that there is some effect.

3.3 Rhythmic Features

Timing and metre are significant characteristics of music (Cooper and Meyer, 1960) and
so any attempt to find the musicality of sound sources should also consider rhythmic
components of the audio. For example, meter invokes the listener with some form of
expectancy (Large and Kolen, 1994), which is argued to be an important trait of the
perception of music (Meyer, 1956, Rohrmeier and Koelsch, 2012), and so evidence of
metre within the audio stream could suggest the illusion will materialise. Of course, the
act of repetition itself will invoke some artificial metric structure, since there becomes an
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inherent and obvious grouping of regular recurrent rhythmic events (namely, the entire
sample itself), however we are interested in the finer detailed structure. There are two
facets of the consistency of rhythm that are of interest, specifically temporal regularity
(the structure of the meter), and the steadiness of strength of the rhythmic cues that
cement a rhythmic idea. As a basis to our rhythmic measurements, we identify the onset
times the rhythmic cues (such as notes or sonic pulses) occur at. There are two main
ways of identifying these cues — by observing energy spikes of the audio, or using the
times when the notes occur.

The onset envelope, which returns for each time frame the amount of increasing spectral
energy in the audio signal, is a very important measurement used in MIR research6.
From this envelope, heuristics (such as Böck et al., 2012, Ellis, 2007) exist to pick out
the prominent peaks that in turn identify the potential beat and tempo within the
audio, even when onsets are soft or weak. An example of an onset envelope is illustrated
in Figure 3.2 (black solid line). The other option of which rhythmic events to analyse
is to use the information already in the extracted melody. In voice, the prosody and
rhythm of speech is induced by predominant patterns of stressed and accentuation of
syllables (Cutler, 1991), for which we have already identified the time steps they occur
at. The disadvantage of this approach of course is that it is only suited for the human
voice — a non-vocal sound could have unpitched rhythmic indicators that the onset
envelope would detect.

Figure 3.2 illustrates the difference between the peaks of the onset envelope (black dots)
and the note start times we extracted. It can be seen that peaks do not necessarily
align to when the notes start, possibly due to plosives in the speech that cause loud
bursts in the signal but that are not indicative of note boundaries. Initial testing of
both these methods found that using the note onset times for temporal specific rhythm
features produced better results, whereas the onset envelope was needed for measuring
the salience of the cues.

The first rhythmic measure attempts to quantify how balanced the onset times are by
looking at the ratios of the inter-onset intervals (IOIs), as proposed by Scott et al. (1986):

onset variability =
1
m

∑
i 6=j

∣∣∣∣∣log( di
dj

)

∣∣∣∣∣ (3.5)

where di, d2, . . . , dm are the times between onsets (see Figure 3.2). This measure has
some nice properties — evenly spaced intervals will score zero (since log(1) = 0) with
higher values indicating greater irregularities, the measure is symmetric (as the absolute

6In fact, it is so useful that an annual competition is held by MIREX to advance the effectiveness of
this measurement (Downie et al., 2005).
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Figure 3.2: Example of a normalised onset envelope, along with the note onset times.
The strongest peaks above the threshold are indicated.

value of the logarithm ensures that flipping the ratio will not change the measure), the
ratio is invariant to tempo (as kdi/kdj = di/dj), and can allow comparisons across
different sequence lengths. One could also simply use the standard deviation of the IOIs
and have many of the same properties, but would be sensitive to the tempo of events.
Regular musical rhythms are certainly not limited to those aligning to an equally spaced
temporal grids — metres with some swing (e.g. a short-long short-long rhythm) are very
common within music across the globe. The measure above is somewhat unaffected by
such rhythms if they are ‘regularly irregular’, especially if they are repeated periodically.
This is certainly not the case if we used the standard deviation, which will only increase
as the irregularities are repeated, even though it can be argued that the sequence is
more regular because of this.

The (normalised) Pairwise Variability Index (nPVI, Gibbon and Gut, 2001, Low and
Grabe, 1995) is another more recent measure of rhythm in speech and was developed to
make comparative measures of timing of vowels in spoken word across languages:

npvi =
100
m− 1

m−1∑
k=1

∣∣∣∣ dk − dk+1
(dk + dk+1)/2

∣∣∣∣ . (3.6)

Lower values indicate more regular onset times, and to our knowledge has not been used
in the study of Speech-to-Song. A recent paper by Condit-Schultz (2019) warns of some
of the dangers of using this measure alone in quantifying rhythms qualities and styles
of music — rhythm is too complex to be distilled into a single value. However, we are
using this as an objective measure of variability of the onset times and not as a measure
of complexity of the rhythm.

Next, we look at the consistency of the onset strengths. Steady and unchanging peaks
of energy in the audio could facilitate the illusion by suggesting an underlying rhythmic
process. For this, we use the onset envelope mentioned above, as this yields an indication
of the energy spikes within the audio signal. We use the Python module Librosa (McFee



Feature Engineering 32

et al., 2015) to obtain this which is then normalised in the range [0, 1], and a standard
peak finding algorithm to identify the strengths of the most prominent spikes above a
certain threshold. Finally, the standard deviation of these peaks are then calculated to
produce onset strength, such that smaller values signify more regular strength pat-
terns. As we are only concerned with the most significant peaks, the threshold level is
set to 0.5.

3.4 Dissonance Features

We are interested in characteristics of the musical phrase that may or may not be present
within the audio sample, and the structure of the harmony within it. We analyse this
by making measurements of the harmonic relationships between individual notes that
make up the sequence, and attempt to capture the dynamics of tension and release that
composers typically create in their musical phrasing. This is usually achieved through
use of harmony, but other techniques (such as rhythmic changes or developing timbre)
can invoke the same effect. While it is tricky to quantify the level of tension and
release, we present a measurement that could prove useful for our task. Here we move
away from classic music theory and use ideas from psychoacoustics as a basis for these
measurements.

First, to make comparisons of two notes, a notion of ‘harmonic distance’ between their
pitches is defined. That is, we wish to measure how close two different pitches sound
in a harmonious way, where two notes are near if they sound harmonious together, and
distant if they sound unrelated and mismatched. This is a perceptual distance, rather
than something absolute or numerical (for example, the linear distance of the notes on a
piano keyboard, or difference in frequencies), and has a complex, non-linear relationship
(as evident in Figure 3.1). Previous attempts of defining a harmony space often involve
setting pitches on a simple two dimensional lattice (named a Tonnetz, Euler, 1739),
where steps along a specific dimension from one pitch are pitches that are a perfect
fifth or major third away. This notion has been developed to the extreme to form
more complex spaces, including a highly intricate five-dimensional double helix wrapped
around a helical cylinder (Shepard, 1982) that attempts to capture all possible musical
intervals. While these formulations are useful for music theorists and composers, they
are limited to a discrete space, where pitches are distinct and fall within a framework
(such as 12 tone diatonic system), and that frequencies that map somewhere in between
these points are hard to interpret or are ill-defined. We turn to psychoacoustics to
formulate a model of harmony that exists in a continuous domain, that can compare
any two frequencies.
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3.4.1 Quantifying Dissonance

Dissonance is a key concept from psychoacoustics that happens when two sounds are
perceived as unpleasant, jarring or harsh, whereas consonant sounds are those that are
harmonious, pleasant and warm. There is a cultural component to the definition of
what notes are consonant or dissonant, and that throughout history these labels have
shifted within musical styles and practises. However, a more pragmatic study of this
phenomenon was first introduced in Von Helmholtz (1875). He reasoned that if two sine
waves similar in frequency can sound ‘rough’ if their constructive interference causes a
beating sound, and that if any sound can be deconstructive into component sine waves,
then dissonance is caused when this rough beating occurs with the partials of these
sounds. Numerous studies on this that aim to quantify the degree on how this effects
sensory dissonance levels along with experimental data (e.g. Hutchinson and Knopoff,
1978, Kameoka and Kuriyagawa, 1969, Plomp and Levelt, 1965, to name a few).

Vassilakis (2001) reviews such models and proposes the following to address some of the
concerns: the roughness R of two pure sine tones with frequencies f1, f2 and amplitudes
A1,A2 is given by:

R = X0.1 · 12Y
3.11 ·Z (3.7)

where:

X = A1 ·A2, Y =
2 ·min(A1,A2)

A1 +A2
,

Z = e−3.5·s|f1−f2| − e−5.75·s|f1−f2|, s =
0.24

0.0207 ·min(f1, f2) + 18.96.

Finally, the roughness of a signal made up of more than two component sine waves is
estimated by summing together R of all pairs of sine waves that make up the signal.

To measure the dissonance of two notes, we compute the roughness of the signal gen-
erated by the two notes playing at the same time, a method used by Sethares (2005).
A note has a fundamental frequency f0 and n harmonics at frequencies fk = kf0 with
amplitudes Ak = pk, for some factor p ∈ [0, 1]. In Sethares’ study and the construction
of the tone stimuli of Tierney et al. (2018b) set n = 6, however Sethares uses p = 0.88,
whereas Tierney et al. have p = 1. For consistency with regard to the Speech-to-Song
illusion, we use the parameters of Tierney et al.

Figure 3.3 illustrates how the dissonance of two notes behaves for a range of interval
sizes. This plot is generated by fixing one note, and computing the dissonance with a
second note over a range of frequency ratios. For example, the octave interval occurs
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Figure 3.3: The dissonance measure for two notes for a range of ratios of their fun-
damental frequency. Local minima align well for common intervals tuned with just

intonation.

when the fundamental frequency of the second note is double that of the first, and this
is represented on the plot at the ratio 2. Common intervals in Western music emerge
as local minima of this curve, such as the perfect fifth and the major and minor thirds,
whereas intervals that just off the ideal ratio have comparatively higher dissonance. The
choice of parameter values in the number of partials in the note and their amplitude
fall-off effect the shape of this curve, however typically the main characteristics remain
— increasing n adds more valleys at more ‘complex’ interval ratios, and increases the
overall height of the curve, and p influences the relative depth of the dips. So long as
the values we chose remain consistent, the comparisons we make remain valid. Armed
with a method of assessing the relative fit of two notes, we can make measurements of
the relationships of the note sequence in the audio sample.

3.4.2 The Self-Similarity Matrix

Self-similarity matrices are used extensively in MIR to identify hidden structure and
patterns over the length of the sequence (Foote, 1999, Klapuri et al., 2010), and are
used in a diverse range of tasks, including segmentation (Foote, 2000), automatic sum-
marisation (Cooper and Foote, 2002), chorus detection (Goto, 2006), and rhythmic anal-
ysis (Foote and Uchihashi, 2001). These representations of the audio are created with
some measure of similarity (such as homogeneity or distance) of some audio feature (e.g.
chroma, spectral envelope, MFCCs) and compares every time step to every other time
step. This yields an n× n square matrix, with time on both axis such that the element
at (i, j) is the similarity of time steps i and j. Depending on the metric used, this matrix
is often symmetrical along the main diagonal. Points near to the main diagonal refer
to comparisons of the feature that are local temporally, and further points are those of
longer term relationships, and thus a full picture of the internal structure is exposed.
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Figure 3.4: Self-similarity plots using the dissonance measure of a six note piano
melody. Darker squares correspond to higher dissonance between the notes.

Analysis over these matrices, such as using auto-correlation, then reveal characteristics
of the structure, such as repeated sections or parts that have the same instrumentation.

We create a self-similarity matrix using the dissonance measure, such that each cell
represents the dissonance comparison of each note pair. To demonstrate this, Figure 3.4b
shows the matrix for a short melodic sequence of notes played on a piano, where the
both axes represent the note numbers. For example, the cell marked A compares the
first and second note (Figure 3.4a) using the measurement outlined above. Cell B is
computed of the fourth and sixth note pair which have a longer distance relation, and
all possible note pairs are represented as a cell in the matrix, with comparisons over
longer temporal distance further away the main diagonal. All entries along this main
diagonal are zero (as the unison interval is perfectly consonant by this method), and the
matrix is symmetric since our dissonance measure is symmetric. Alternatively, we can
construct another matrix where axes denotes time instead of note numbers, such that the
row heights and column widths are proportional to note lengths7. This is demonstrated
in Figure 3.4c where it can be seen that the information of the first matrix is contained,
but with the addition that the note lengths in the melody are preserved. In this matrix,
longer notes contribute a greater ‘weight’ to any statistics taken over the representation,
which will prove desirable for some of the measurements we make. We denote these two
different matrices I and II to differentiate between the two types.

7Silent or unpitched gaps in between notes are ignored.
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From these representations we can infer some features of the melody, such that the last
few notes have some dissonance between them but are consonant with the rest of the
phrase, which could suggest there is a build up of tension that resolves on the conclusion
of the phrase with the last note being very consonant to the first note. By taking some
measurements of particular regions of the matrix we can design various features that
capture such structure.

3.4.3 Feature Measurements

First, we can make some basic statistical measurements over the entire matrix II —
max dissonance, mean dissonance and sd dissonance computes the maximum, mean
and standard deviation of the time dissonance matrix. The next two measurements,
last mean diss and last max diss, infer some information about the final note with
the idea that a resolving note would be harmonious to much of the rest of the phrase.
These are computed over the final column of I to detect if there the last note ‘fits’
well with the rest of the melody. Next, we take statistics over different quadrants of
the matrix II to expose some broader aspects of the structure of the note sequence.
mean diss 1 is the average dissonance of the top left quadrant which represents the
first half of the melody, mean diss 3 that of the bottom right quadrant (final half), and
mean diss 2 is the mean of the top right quadrant, which measures the average disso-
nance between the two halves. Finally, we take measurements of some of the diagonals
of the matrix I. The first diagonal directly above the main (i.e. from cell (2, 1) to (6, 5)
in Figure 3.4b) are the relation between each successive note, and so measurements over
these cells can offer information about the finer structure of the melody. The second
diagonal above the main then refers to relations of every note pair separated by two, (i.e.
pairs 1 and 3, 2 and 4, 3 and 5 etc), and finally the third diagonal for notes separated by
three. Taking the mean and standard deviation of the cells in the first diagonal returns
mean d order 1, sd d order 1, and similarly the same is done for diagonals 2 and 3.

Each of these features have varying degrees of sensitivity to the order on which the notes
occur in the melody, depending on which subset of the matrix they measure over. The
first set that take basic statistics over the whole matrix are indifferent to where each
note appears, the last note features of course are not affected by the order of the rest
of the notes, the quadrants are invariant to the note order within each half, and finally
the diagonal measurements are completely dependant of the arrangement. This way,
the structure of the melody is quantified, and that two stimuli with the same notes but
rearranged in different ordering yield different statistics.



Chapter 4

Data Analysis

Music. . . can name the unnameable and
communicate the unknowable.

— Leonard Bernstein

4.1 Audio Stimuli

For this study we have a mixed selection of audio recordings and a parallel set of human
ratings data from previous experiments to use for our analysis. The data is aggregated
from various studies and are used in to fit and validate our models. With this data,
we analyse the distributions and propose a labelling strategy for our binary classifier
models to predict.

Most experiments into Speech-to-Song use their own set of materials in their experiments
using a small number of recordings, and often with some manipulation of certain features
of the stimuli. The original study by Deutsch et al. (2011) used only one recording and
various alterations of pitches and word order, and this same stimulus is used in Vanden
Bosch der Nederlanden et al. (2015) in their test on how musical experience influences the
illusion. Falk et al. (2014) used only two German sentences to test rhythmic differences,
and in their studies into the effect of tonal languages, Jaisin et al. (2016) use 6 stimuli
(each in a different language), whereas Leung and Zhou (2018) use 6 English and 6 in
Mandarin/Cantonese. Few experiments use larger collections of samples, most notably
the assortment of 48 English language stimuli used by Tierney et al. (2012) that are
used for several follow up studies (Graber et al., 2017, Tierney et al., 2018a,b). Most
experiments so far are modest in size and scope, and for a data driven approach on

37
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the illusion we require a broader and richer set of stimuli along with a large number of
ratings.

4.1.1 Materials

The first set of material are the 300 recordings used in the web experiment of Cornelissen
et al. (2016), along the human ratings collected on the transformation level of each
stimuli. This is the largest study on the Speech-to-Song to date and so we can utilise
data driven techniques. Contained in this set are the original 48 stimuli of Tierney et al.
(2012), along with 252 new samples also taken from audiobooks in multiple languages.
As the material used by Tierney et al. have been used in several studies that established
some of the main results, it is useful to denote these such that we can relate previous
results from these studies to our measurements on the same stimuli, and check if the
same observations hold on this larger dataset. We denote the 48 stimuli by at for
reference, the other 252 by uva and the union of these two compilations by mcg.

Also obtained for this study are the material used by Groenveld et al. (2019), where 15
of the least transforming stimuli from mcg are altered in such a way that participants
rated the modified stimuli as more transforming than the unmodified audio. For each
of the 15 stimuli, there are three levels of alterations (plus the originals) which provides
60 stimuli in total. As the ratings for these stimuli are not a part of the mcg study
but obtained through a different experimental setup, it would not be suitable to include
them in the mix when fitting the models. Instead, we use these as validation data —
if a model can accurately predict whether the speech transforms into song or not then
it should mimic the results of this study and rate the modified stimuli as more likely to
invoke the illusion. Finally, for validation, we also use the very original Diana Deutsch
recording that is of course transforming, along with two control stimuli (white noise and
complete silence) that we know should not transform to further test the robustness of
the models.

4.1.2 Human Ratings

During the experiment of Cornelissen et al. (2016), participants were asked to rate how
musical they perceived the speech as song-like using a continuous slider, with the position
of the slider being recorded at short frequent time steps such that information about
how the slider moves over time is included. This provides a wealth of data on not only
the extent in which a the speech transformed, but at what point the transformation
happened. With this information, it would be possible to model how the slider changes
over time during the repetitions, or as a method of filtering out the stimuli that already
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sound musical to begin with. However, we are not interested in modelling the temporal
aspect of the illusion (see Rowland et al., 2019), but rather the simpler task of making
the classification itself of whether the speech will transform or not, and for this we need
binary labels on the stimulus. Therefore, we take the final position of the slider as
the final rating of the stimulus by the participant. To make the labels, an aggregation
scheme that collects the multiple ratings for each stimulus into an overall score and the
threshold value that categorises them based on this score needs to be decided.

stimulus
0.0

0.2

0.4

0.6

0.8

1.0
mean
min-max
25-75%

final score

Figure 4.1: Distributions of the final scores for each stimulus in the mcg experiment,
ranked by the mean final score. Enhanced boxplot of all the final ratings on the right.

For each stimulus, we have a number of ratings by the participants of the level they
perceive the illusion in the range [0, 1], where a score 0 corresponds to exactly like speech
and 1 with exactly like song. Each stimuli has between one and 15 ratings (mean 8,
standard deviation 1.15), with a total of 2404 individual data points. The final rating
has a very skewed distribution — 49% of ratings are below 0.1 and only 17% above 0.5
(as shown by the enhanced boxplot1 on the right of Figure 4.1) with an average score
of 0.22. Within each stimulus, participants only agree to a certain extent: on average
a stimulus has a standard deviation of 0.22, with the maximum being 0.39. Figure 4.1
summarises the final ratings for every stimulus, illustrating the mean final score along
with the 25–75 percentile range and the minimum and maximum score.

This also shows a positive trend between mean final score and variance of the score
(r = 0.73) that suggests higher rated stimuli generally have more disagreement between
participants. This trend can be explained for three reasons — first, not every listener
experiences the illusion to the same degree so this already accounts for a large amount
of the variance. Second, it can be seen that nearly every stimulus has at least one rating
of exactly zero, even for the highly transforming stimuli, either because the participant
really did not perceive the illusion at all, or there are trials where the user did not
complete the task properly. As this was an online experiment, the participants’ attention
and environment could not be controlled, compromising on the reliability of the results.

1An extension to the standard boxplot, useful for large data (Hofmann et al., 2011).
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Figure 4.2: Illustrations of how three levels of manipulation (30%, 60% and 90%) are
reflected by a steady increase or decrease of the measurements of three of the features,
as a percentage of the measurement for the original stimulus. Marked line indicates the

mean change of the feature.

Finally, presumably participants have a different sense of scale in their rating strategy
on how far up they position the slider for transforming stimuli. A rating of exactly like
speech is easier to align with than exactly like song, so there is less controversy with
low scoring stimuli. Being a subjective study that requires people to scale the extent
to which an illusion is experienced, high variance is to be expected, as Rowland et al.
(2019) point out after observing similar behaviour from the ratings of their experiment.
Nonetheless, we outline a method in Section 4.2 to interpret the data as reliably as
possible.

4.1.3 Manipulated Stimuli

While the mcg data will be used to fit the models, we have several other audio samples
that were not a part of that particular experiment, but where the behaviour of the
illusion is known (or expected). The manipulated stimuli of Groenveld et al. (2019) are
“auto-tuned” in two ways — first the pitches of the syllables are shifted to the nearest
diatonic scale, and the F0 contours are stabilised to produce stimuli with more song-like
characteristics. This has a direct consequence on two of our features that we measure,
such that the stability feature should decrease and key fit score increases. These
are shown in the first two plots of Figure 4.2, where it can be seen that on average the
there is quite a marked change from the unaltered stimulus measurements through the
different levels of manipulation. Manipulation of the key fit score has indirect interaction
with other features that are sensitive to musical key, such as scalar interval, and
the strength score of certain intervals such as i p5. As the key profiles are integral
to the posterior computed in the bayesian distance measurement, this feature also
decreases (as illustrated), suggesting that the manipulated melodies are also more typical
of Western music according to this model.

These manipulated stimuli offer two modes of validating our process. First, as just
mentioned, they confirm that the methods to measure F0 stability, key fit and related
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features are justified and correctly recognise the nature of the manipulations, albeit with
some noise due to the imperfect automatic extraction of melody. Secondly, we verify
the models by comparing the judgement of the manipulated stimuli to their originals
to test if they accurately behave the same as the human trials and agree that the
manipulated speech are more likely to transform. This is outlined in the validation
procedure in Section 5.2.

4.2 Data Preparation

Before we can fit models to the data, we must prepare the raw data obtained by extract-
ing all the features of Chapter 3 from the audio stimuli described above, and aligning
them with the ratings given by the participants of the previous experiment.

4.2.1 Aggregation Schemes

We reduce the multiple ratings per stimulus into an overall score on how likely the
fragment of speech will transform. There are several options for this, the most obvious
of which is to simply take the mean final rating by each participant. Unfortunately, as
evident from the high variance of ratings, and the fact that different people experience
the illusion to different degrees, this approach can ‘wash-out’ some of the higher rated
stimuli if there are some low rated scores. Taking the median offers a natural choice as
this is less sensitive to outliers, but this brings the disadvantage of reducing the level of
the highest rated stimuli again.

An alternate approach is to consider only the highest ratings of a given stimulus. It
should be noted that during the experiment, the slider position is initialised at the far
left corresponding to the rating Exactly Like Speech. This imparts a natural bias towards
the lower end of the rating scale, and so if the slider ends on the far right then this
implies the participant felt compelled enough to rate the stimulus highly transforming.
With this reasoning, higher ratings would be more reliable and indicative of whether the
stimulus transforms. Therefore, we take the mean of the top three highest ratings for
a stimulus as the final score. This way, a sample that transforms strongly will indeed
receive a high rating, whereas if the top three scores are low then we can be sure that
transformation does not occur (or is very weak).

In their dataset, Tierney et al. organised their stimuli so the first 24 are transforming, and
the other 24 are non-transforming. We can see from Figure 4.3 that taking the mean of
the top three highest ratings preserves this distinction such that the transforming stimuli
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Figure 4.3: Distribution of data points of Tierney et al. (at) stimuli from the ratings
obtained from the mcg experiment. Transforming stimuli have IDs from 1 to 24.

receive a higher rating than almost all the non-transforming stimuli. Additionally, the
distribution seems to suggest they numbered their stimuli by the rank of the ratings
they obtained from their own experiment, as evident by a Spearman rank-correlation
coefficient of 0.82 of mcg ratings vs stimulus ID. This also shows that the participants of
the mcg study agreed strongly by the classification of transforming and non-transforming
stimuli from the original dataset, and the aggregation scheme works well in interpreting
their ratings.

While Tierney et al. provided labelled stimuli as transforming or not, unfortunately
we do not have such a straight forward distinction for the uva data. We devise a
method to label the data according to some threshold level, where a stimulus is classed
as transforming if the mean top three score is above this threshold. By observing the
distribution of ratings of at we can find this threshold that makes a split as close
to the original distinction as possible, and use this to label the rest of the mcg data.
There is a slight discrepancy here in that some non-transforming stimuli are rated higher
than transforming stimuli, and vice versa, so a threshold split cannot segment the data
according to Tierney et al’s classifications perfectly. Nonetheless, as shown in Figure 4.3,
a threshold of 0.46 makes a sufficient split which has an 0.87 accuracy score against the
original labels for the stimuli, where only 5 of the 48 are mislabelled2. From this, we
can label the uva stimuli.

4.2.2 Data filtering

Figure 4.4 shows the distribution of uva ratings (grey shaded area), along with the
bimodal distribution of the at ratings (black line) for comparison. Unfortunately, it
has a very different distribution to the classic at stimuli, and is closer to a unimodal

2By this methodology, different aggregation schemes yield different threshold values — using the
average score as the metric to make the split suggests a threshold of 0.36, while using the median score
a level of 0.35 is most suitable.
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Figure 4.4: Distribution of mcg data subsets, and the effects of filtering the data.

distribution centred around the threshold value. Therefore, many of these stimuli are
ambiguous — it is unclear how they should be labelled with any confidence. It also
suggests that Tierney et al. were sure of selecting fragments that firmly invoke the
illusion or not, and that such care was not taken when sourcing the stimuli of uva.
To give the classifier the best chance of success, we filter out the ambiguous data to
leave only the stimuli that we can confidently label, and to attempt to form a stronger
bimodal distribution. This way, when the models are fitted they are fed positive and
negative stimuli from the more extreme ends of the rating scale, and fewer from the
inconclusive region. As our models make classifications by segmenting boundaries in the
feature space, having a broader distribution in this space only aids the fitting process
and adds confidence to model.

Filtering the data is a simple process of removing some percentage of the data closest to
the threshold value to squash the peak and separate the dataset more distinctly. First,
we drop any stimulus that has less than three ratings to ensure reliable values, which
loses 6 data points. Next, we opted to remove 30% of the stimuli closest to the threshold
value decided from the at set. This struck a good balance between forming a bimodal
distribution while not discarding too much data, given that 252 is quite a modest size
for a machine learning approach and that as much data as possible should be conserved.
The final distribution is shown in Figure 4.4 (red shaded area), and it can be seen that
the two peaks have formed, both lined up somewhat to at. This yields 173 stimuli of
uva, with a total of 218 in the set mcg3, and is well balanced (56% negative samples,
44% positive), ideal for a binary classification task. Finally, the models we choose to
fit this data ideally require the data to be have a sample mean of 0 and a standard
deviation of 1, so we scale and shift the data of each feature to have this property. This
is a standard step in most machine learning pipelines, and for consistency we save the
scaling and shifting parameters and apply these to any future data.

3Three of the audio files from at were corrupted (numbers 25, 30 and 46), so in practise we only
worked with 45 stimuli from this dataset. However, the scores for these stimuli were still included in the
above analysis for setting the threshold level etc.
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4.3 Feature Distributions and Correlations

We look at the distribution of the ratings obtained in Section 4.2 against the stimulus
features computed in Chapter 3 to measure if there is any direct predictive power from
the features alone. Ideally, there should be evidence of correlation that corresponds to
established theories on the features that facilitate the transformation, although consid-
ering the complex nature of the illusion and the noisiness of the perception ratings a
single feature is not expected to be sufficient in predicting the transformation alone.
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Figure 4.5: Distribution of stability for transforming and non-transforming stimuli,
along with statistical tests and their p-values testing if the distributions are the same.

It has long been hypothesised that stability is a key factor in the illusion, with Tierney
et al. (2012) finding a significant effect of this measure on the transformation. To
make this claim, they compared the distribution of stability scores for transforming
and non-transforming stimuli then conducted a Student’s t-test to confirm that the
sample means of these distributions are significantly different (reported p < 0.0001).
We conduct the same test on their stimuli with agreeable results, although we obtain
a somewhat weaker p-value (p = 0.028)4, as shown on the left plot in Figure 4.5. This
measure remains significant on the full mcg dataset (right plot) and a so appears to be
consistent, although it should be noted the support of both distributions are the same.
However, this statistical test only measures the significance of the difference of the sample
means with the underlying assumption that the distributions are normal and with the
same variance. According to the Shapiro-Wilk test for normality (Shapiro and Wilk,
1965), the stability measure fails this test, and so the t-test is inappropriate. The
non-parametric Mann-Whitney U -test (MW, Mann and Whitney, 1947) checks if two
distributions have different locations without the need for the assumption of normality,
and is the first resort when this condition fails. Under this test, stability remains
significantly different, in both Tierney et al. stimuli and the complete mcg set.

4There are several possible reasons for the discrepancy: they annotated the note boundaries by hand
(whereas we used automatic methods), we are missing three of the audio files, and there could be slight
differences in the parameters of the algorithm that extracted the F0 contour.
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The two-sample Kolmogorov-Smirnov (KS, Hodges, 1958) test offers a stronger, alternate
choice. Unlike Student’s t and MW tests which only checks differences in the location
(mean and median, respectively) of the distributions, KS is sensitive to the shape (such as
skewness, dispersion), and so is a more powerful assessment of the dissimilarity between
the two samples. If the KS test statistic is small (high p-value), then we cannot reject
the hypothesis that the distributions are similar. For the stability score across the
at stimuli, this test yields KS = 0.36 (p = 0.088 > 0.05), so we cannot conclude that
they are different, contrasting with the conclusion of Tierney et al. on their own dataset.
Nonetheless, for the larger mcg data p = 0.002 and we can confidently make the claim
they are indeed different. This demonstrates that larger data sizes are important for
making claims with any certainty, and so we could be cautious of the claims made with
Tierney et al’s sample size.

Continuing this line of inquiry, we test if any of the remaining features have signifi-
cantly different distributions. With the Kolmogorov-Smirnov test, we find that only
10 of the features hold significance (for α = 0.05), most notably key fit, length,
i M3 and mean diss 3, along with the mean, maximum and count of intervals. Ac-
cording to this test, stability has the most significantly different distributions. Of
all the features, mean diss 1 is the only feature that passes the Shapiro-Wilk test of
normality and has statistically significant divergent means across transforming and non-
transforming stimuli according to the Student t-test. Nonetheless, this feature also fails
the KS test, countering this result. Under the weaker Mann-Whitney test, 16 of the
33 features are significantly different, including all those claimed by the KS test, along
with percent pitched, scalar interval, i p5, and bayesian distance. No rhythmic
features can make this claim.

We consider the values of the features on the final rating of the stimulus itself, and test
if there is any correlation (positive or negative) that directly relates the measurement to
the rating. While correlation does not imply causation, it is still useful to understand
which relationships exist within the data, and how significant they are. For this, we
use Pearson’s r statistic and compute an associated p-value that reflects the probability
that an uncorrelated set produces an r as least as strong as the observed value, and
so small values indicate significance. However, the computation of the p-value assumes
normality, and as shown this does not hold for most features (only eight features do),
so any conclusions drawn from this value should be intrepeted with caution.

Returning to stability, we only find a very weak correlation within the Tierney et
al. dataset (rat = −0.25) which is not significant (p > 0.05). Nonetheless, we do
find that there is a significant correlation of this feature over the entire mcg dataset
(rmcg = −0.21). As expected, the negative correlation is consistent with the theory
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Figure 4.6: Distribution of stimuli for three features against their ratings, with Pear-
son’s correlation coefficient for the Tierney et al. subset, and the full mcg set. Asterisk

indicates p < 0.05

that stable pitch contours invoke the illusion, however from the distribution this does
not appear to be a sufficient requirement — many non-transforming stimuli also have
stable contours. Figure 4.6 illustrates this distribution along with two other significant
examples and their correlation coefficients for the original at dataset, and the complete
mcg dataset5. Again, key fit has a weak but significant effect on the transformation
only over the full dataset, and onset variability is the only rhythmic feature to have
any strong direct influence on the illusion, with the negative correlation implying that
more even spaced onsets are more likely to transform the speech.

This point regarding significance seems to be trend in the datasets — if the rest of
the uva stimuli where not included in the experiment, then several of the results from
previous studies would fail to pass significance. A complete table (Table B.1) is presented
in Appendix B of all the features and their correlations to the scores of both at and uva
individually and combined. It can be seen that no one feature is consistently significant
across both subsets, and that a handful are only significant on the full dataset and not on
either subset. None of them are particularly strong, with the largest effect over the entire
dataset being the length of the stimulus with r = −0.27, followed by the variability of
onsets (r = −0.24) and the strength of a major third interval (i M3, r = −0.23).

The discrepancy between these correlations highlights that the illusion is not a trivial
effect of any one of the features, and that a given measurement of a speech clip is not
enough to confidently tell how it will be perceived on repetition. Rather, it appears to
manifest due to a dynamic interaction of these characteristics, or perhaps those beyond
the ones measured here. We turn to machine learning techniques to attempt to capture
these interaction and determin if there really is any predictive power in using these
features to make the classification of a stimulus.

5The appearance of clusters in this plot is a result of the filtering which removed central points.



Chapter 5

Classification Models

Intelligibility in music seems to be impossible
without repetition.

— Arnold Schoenberg

5.1 Statistical Modelling

When modelling statistical data there are two main approaches — either classification
where data is categorised with discrete labels, or regression, where a dependent variable
is modelled based on a set of predictors (i.e. features). In the case of Speech-to-Song,
we could either predict the binary labels of the audio sample (that is, will it transform
or not), or use a regression model to predict the mean final slider position. Considering
how noisy and inconsistent the slider ratings are, classification is a relatively easier task.
Nonetheless, classification models often output more than just its prediction but also
a probability (‘confidence’) value that can be interpreted as the probability that the
given input is labelled transforming or not. Although less precise than a regression task,
this confidence level is somewhat analogous to the slider position if we interpret the
participants rating as the certainty level that the illusion materialises.

Most studies into the Speech-to-Song use linear models that are fitted to their data
to measure the effect of a small number of features (e.g. the Pearsons r of stability
or musical key in Tierney et al., 2018a) but do not go beyond this level of statistical
analysis. Groenveld et al. (2019) use a Probit model (with interaction terms) to model
the stimuli scores from the manipulations they made, whereas Falk et al. (2014) used a
binomial generalised linear model to perform a logistic regression. Graber (2015) in her
attempt to model the at dataset used decision trees to predict the classifications, which
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divides the data by a nested set of conditions on the features until a label can be applied.
This type of model is effective in that they are not only non-linear but also provides a
clear set of rules about how the model makes a prediction, however their performance
suffers on noisy data. We use a range of more powerful models, some still linear, which
are fitted to the features and validated to check how well they can describe the data.
We then attempt to analyse the models to understand how the classification is made
and which features support the decision.

All models are implemented in the machine learning Python library Scikit-learn (Pe-
dregosa et al., 2011), and unless stated are parameterised by the defaults provided by
the library. Let θ be a model, and Pθ(ŷ = 1 |x) be the probability the model assigns the
label ‘Transforming’ given the feature vector x = {x1, . . . ,xk}. We class the stimulus
as transforming if this probability is greater than 0.5, otherwise as ‘Non-Transforming’.

5.1.1 The Logistic Model

The first model we use is the standard binary logistic model as a classifier (Menard,
2002). Given a set of explanatory variables (features), the model outputs a probability
of belonging to a class by mapping the result of a linear regression to the interval [0, 1]
through the logistic function:

Pθ(ŷ = 1 |x) = 1
1 + exp(−β0 −

∑k
i=1 βixi)

(5.1)

where β0,β1, . . . ,βk are the coefficients of the regression. Fitting this model to the
data is a standard process of computing the maximum likelihood estimation using some
iterative process until the solution converges.

By its construction, the logistic model naturally outputs a probability of the class,
rather than just its prediction, so no further work is needed. Analysing the weights is
straightforward too, since the term inside the exponential is essentially a linear regression
so the relative magnitude of the coefficients reveals the feature importance, and is simple
to interpret (Molnar, 2019). This model does not capture interaction effects explicitly
— this would require engineering new features by including additional terms βi,jxixj for
i 6= j within the exponential term of (5.1). We do not expect this to perform too well
because of this, however this weaker model is included to serve for comparison with the
more capable models.
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5.1.2 Support Vector Machines

Support vector machines (SVMs, Vapnik, 1998) are a rather robust and flexible math-
ematical model that classify inputs by segmenting the multi-dimensional feature space
into regions and categorising all points within a region one of two labels. This is achieved
by slicing the space with hyper-planes, called decision boundaries, such the size of the
margin between the nearest points either side of the boundary is maximised. In other
words, the division of the space attempts to make the ‘cleanest’ partitioning such that
all points are as far from the boundaries as possible, and would require new data points
to deviate greatly from the training data to cause a missclassification. During the fitting
procedure, only the data points that are closest to boundaries (the support vectors) have
an influence on the orientation of the hyper-plane, and outliers that are far away do not
contribute to its position. In this way, SVMs are robust to outliers. If the data is not
linearly separable, then the hyper-plane cannot divide the space perfectly but a best-fit
plane is found, such that a loss that measures the trade off between margin width and
missclassification is minimised.

The hyper-planes follow a form w · x− b = 0 to segment the space, so is linear, and
like the logistic function does not model interaction effect implicitly. From Section 4.3
however, the illusion appears to manifest as a non-linear interaction of the features,
and thus the linear SVM could be insufficient at capturing a relationship of features
to classification. Fortunately, SVMs can segment non-linear space using the ‘kernel
trick’ (Vert et al., 2004, page 34), where the data is transformed in a non-linear fashion
with a kernel function φ, such the transformed space is linearly separable. This also has
the added benefit that interaction is now captured in the space, as the dot product is
replaced by this kernel function that can incorporate interaction terms. However, the
cost of gaining more fitting power with non-linear SVMs is we that we lose intuitive
interpretation of the space and ultimately how the model makes the classification.

We use three non-linear kernels — the radial bias function (RBF) that can capture
clustering, a polynomial function which has some degree of flex in curving the space,
and the hyperbolic tangent sigmoid function. In their implementation, the parameters
of these are set to sensible defaults, and the polynomial degree is set to three. Platt
(2000) outlines a method to map the decision of an SVM to a probability by fitting
another sigmoid function to the distance of the point to the decision boundary. This
requires an extra training step to calibrate the parameters of the sigmoid function to
produce a proper probability, which could be considered an expensive operation when
dealing with larger datasets, though for our use this is acceptable.
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5.1.3 Ensemble Methods

Finally, we also combine the outputs of the different models to produce an ensemble
classifier. Typically, collecting the outputs of several, independent models improves the
performace of any single one classifier as the variance in outputs are reduced. Several
strategies exist in combining the outputs, for example in a voting classifier the final
decision is a simple majority vote of the individual classifiers. We opt for taking the
average probability as the final classification statistic. This way, one very confident
model can sway the decision if the other classifiers are indecisive (i.e. whose confidence
is around the threshold of 0.5). Let Θ = {θ1, . . . , θn} be a set of individual models, then
the ensemble classification is given by

PΘ(ŷ = 1 |x) = 1
n

n∑
i=1

Pθi
(ŷi = 1 |xi),

where xi is the feature vector required for model θi, which may be different between
models, depending on which features they operate best with. We construct two ensemble
classifiers — one that collects the outputs of just the SVMs, and another that includes
both the SVMs and the logistic. The models in the ensembles are not retrained, but
instead are assembled from the best fitting model of each type, and we measure there
performance together as is.

5.2 Feature Selection

There are two main approaches to feature selection in machine learning — filter methods
and wrapper methods. The former utilises information from the data itself to select the
most important subset of features independent from the induction algorithm, whereas
wrapper methods optimise the performance of the learning model itself through selection
of the feature subsets (Kohavi, 1994). We opt for the later method, as the filter method
typically does not test for interactions, as each features importance is considered in
isolation.

Typically, a feature subset is found in a top-down approach, where the features are
ranked by some criterion and the weakest features are removed one-by-one, such as
in Guyon et al. (2002) where the square of the coefficients are used to sort the most
relevant weights. Ranking features however is not without some unintuitive pitfalls, for
example some features can appear to have small weights but contributed in a significant
and dynamic way (Guyon and Elisseeff, 2003). Likewise, the addition of more features
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can even be detrimental to the performance of the model, so narrowing down the feature
space to the optimal set is not trivial.

Fortunately, our feature space is modest in the number of dimensions (33), and with
a fast fitting procedure (due to the moderate data size), a broad and deep search is
attainable in reasonable time. We conduct a combinatorial search with a basic heuristic
over many subsets of features (up to some limit) and evaluate each model on that feature
set such that the best subset can be found rather quickly.

5.2.1 Evaluation

For a given subset of features, f̂ , we evaluate a model θ by a series of scores that test
certain attributes we wish the model to have. These scores are weighted and summed to
produce a final evaluation score of that particular model and feature set combination,
such that the complete evaluation procedure attempts to maximise this score.

First, we test how well the model can describe the data by means of K-fold cross
validation. This entails first splitting the data into K equal subsets, then the model is
fitted on a training set consisting of K − 1 of the subsets, and tested on the remaining
subset for some chosen evaluation metric. This fitting and testing is done for each
combination of training and test sets, and the overall score is then the mean evaluation
score over each of these ‘folds’. This method is ideal for small and noisy datasets, where
producing a fixed representative training and test set is not feasible. In our procedure,
we choose K = 5, and evaluate the model using the balanced accuracy score. The data
is not shuffled between evaluations so that the mean and variance are comparable across
models. Ideally, if the features are truly representative of the data and help the model,
then the standard deviation of scores across the folds should be low, indicating that the
model is consistently fitting the different folds well. On the other hand, if this deviation
is high then it is likely a sign the model is over-fitting on some folds and under-fitting on
others. We denote the mean accuracy score µacc and the standard deviation σacc, and
ideally the mean should be maximised and standard deviation minimised.

For the remaining scores, the model is first fitted to the full dataset before the next set
evaluations. As mentioned in Section 4.1, we have a set of stimuli that have been manip-
ulated such that there is a significant increase in the probability that they transform in
the illusion, and so we take advantage of this to measure if the model also acknowledges
this difference. First, the probabilities of the unaltered and highly altered (90% manipu-
lation) stimuli are collected from the current model, then we calculate the mean change
of probability and divide by the standard deviation of the altered stimuli probabilities
to produce a score δalt. This way, a score of δalt ≥ 1 indicates a one sigma confidence
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the manipulated stimuli have an increased probability of transforming according to the
model, and therefore we wish for δalt to be maximised too.

Next, we assess the robustness of the model by computing the area under the curve
(AUC) of the receiver-operator characteristic (ROC) curve. The ROC curve plots the
false positive rate against the true positive rate over the full range of threshold values,
and measuring the area under this curve essentially indicates how well the model sep-
arates the false positives and false negatives. This is a standard metric in evaluating
classifiers, as a score of 1 indicates a perfect model (with no false positives or false
negatives), and a random model scores 0.5.

We also check how the model appraises two control stimuli — Diana Deutsch’s “some-
times behaves so strangely” excerpt, and an audio sample that consists of pure white
noise. These stimuli should be classed as transforming and not transforming respectively
by θ, so let

γd = Pθ(ŷ = 1 |xd),

γwn = 1− Pθ(ŷ = 1 |xwn)

where xd and xwn are the feature vectors of the two stimuli. These scores are highest
when the model correctly assigns the appropriate labels to both of them.

Given some feature set f̂ , the final evaluation score then becomes

S(θ, f̂ ) = 3
4 (µacc − σacc) +

1
16
(

min(δalt, 1) + AUC + γd + γwn
)
, (5.2)

where a perfect score is 1, a random classifier has an expected score 0.42, and a naive
model (that always predicts ‘transforming’) achieves 0.46. Most of the weight is assigned
to the models performance in the cross-validation so that we obtain a model which is
not only accurate, but also precise and is not prone to over/under fitting. The score also
rewards confident models — the stronger the predictions are (i.e. assigning probabilities
further from 0.5 and closer to 0 or 1), the higher the scores for both the control stimuli
and the altered stimuli. A confident model has more effectively segmented the feature
space, such that the points are far from the decision boundaries.

5.2.2 Search Procedure

Searching the entire space of feature combinations in a brute-force manner involves
checking 8.6× 109 possible subsets of features, so instead we use a semi-greedy, bottom-
up search to grow the list of effective features, capped to some maximum number. A
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simple, fully greedy algorithm would start with finding the one feature that scores the
best on its own, then iteratively extending this list by the next feature that improves the
score the most and continues until the score can no longer be increased. Unfortunately
this succumbs to the typical pitfalls of greedy algorithms — while simple and quick to
implement, they often reject large regions of the search space too soon and converge
quickly to local maxima, and do not explore a broader area of the space. Therefore, we
construct an algorithm that is essentially a number of these simple greedy algorithms
searching in parallel over a wider region.

Let F = {f1, f2, . . . , fk} be the full set of all the features (hence f̂ ⊆ F), FEATURES LIMIT

be the maximum length of a feature set we search up to, and TOP NUMBER which limits
how broad the search is.

Algorithm 5.1: Search for the best feature set f̂ for model θ.
// initiate results with tuple containing empty feature set and score

0
r ← [(0, {})] ;
c← {} ; // set up cache
for i← 1 to FEATURES LIMIT do

p← [ ] ; // pool of candidate feature sets to be evaluated
foreach (s,f ) ∈ r[: TOP NUMBER] do

foreach f ∈ F do
g ← f ∪ {f} ; // extend every feature set by each feature
if g /∈ c then

p← [p, g] ; // append new feature set to pool
c← c∪ {g} ; // add feature set to cache

foreach f ∈ p do
q ← (S(θ,f ),f ) ; // evaluate feature set
r ← [r, q] ; // and append to the results list

r ← sort(r) ; // sort the results by score in descending order

return r[0] ; // returns the highest ranked feature set

The procedure starts as the greedy algorithm does by evaluating each feature alone,
then sorting by the top scores. However, instead of continuing with the top rated
and extending this feature set, the TOP NUMBER of feature sets are extended by each
remaining feature and then evaluated. It then continues iteratively by sorting all the
previously evaluated features sets by their score, taking the TOP NUMBER highest rated,
extending each of these sets, and this process is repeated FEATURES LIMIT number of
times1, where finally the highest rated set is returned. The algorithm is described in
pseudocode in Algorithm 3.1. The maximum number of evaluations carried out by this
procedure is upper bounded by FEATURES LIMIT× TOP NUMBER× |F |, and in practise

1This number limits the maximum size a feature set can grow to.
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much less, since it is likely many feature sets remain in the top rated sets (the cache
avoids repeat evaluations). This marks a huge speed-up compared to the 2|F | evaluations
of a brute force search.

Ideally we prefer a model that uses only a handful of features, as too many could be
susceptible to overfitting, so we set FEATURES LIMIT to 10, and by setting TOP NUMBER

to 40 we still have quite a broad search space. These values were found to strike a good
balance between efficiency and space exploration.

5.3 Results

The results of running this evaluation over the five models (logistic and four SVMs)
and two ensemble models along with two baselines are presented in Table 5.1. Listed
alongside the highest score is the average (balanced) accuracy score over the K-folds
along with their standard deviation, and the number of features the model uses (where
applicable). The ensembles are constructed from the highest scoring models of each
type, and are not subjected to the feature selection procedure above.

model S µacc(σacc) # features

random 0.42 0.50 (0.06) —
naive 0.46 0.50 (0.00) —

logistic 0.67 0.66 (0.01) 9
SVM - linear 0.68 0.66 (0.01) 9
SVM - RBF 0.69 0.70 (0.03) 7
SVM - poly-3 0.66 0.64 (0.03) 9
SVM - sigmoid 0.68 0.68 (0.02) 10

ensemble (SVMs + logistic) 0.67 0.72 (0.09) —
ensemble (SVMs) 0.71 0.75 (0.07) —

Table 5.1: Summary of model evaluation results.

Bypassing the feature selection procedure altogether and fitting the each model using
all of the available features achieves an average score across the classifiers just above
baseline (S̄ = 0.54, σ = 0.015), demonstrating the necessity and benefit of the selection
process.

All models score significantly better than either baseline, both in terms of the score S and
the cross-validation scheme. Despite no interaction terms, the logistic and linear SVM
perform comparably well to the kernel SVMs, suggesting that any interaction between
these features has a minimal effect on the classification. The ensemble methods also
compare favourably, with the collection of SVMs far outperforming any single model,
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though with a high variance across folds. Twenty-two of the 33 available features are
used by at least one model, with no model using range, onset strength, mean or
maximum interval size, nor several of the dissonance features. scalar interval is also
absent from any model, countering results from Falk et al. (2014).

All models use the stability feature, and every one except the polynomial SVM utilises
the bayesian distance in its predictions. The best performing single model is the SVM
with RBF kernel which not only has the highest score and accuracy, but also achieves
this using the fewest number of features. Along with the two features mentioned above,
this model includes more music theoretic features i p5 and i M3, thus aligning well
with previous results, and also three of the new dissonance features — last max diss,
mean d order 2 and sd d order 3.

As for the linear models, the weights in both cases suggest that percent pitched has
the most important impact on the transformation, and both models indicate that stimuli
with stable pitch contours and melodies close to Western musical phrases improve the
likelihood of transformation. They both agree that last note length should be short,
and that the average dissonance in the last half of the stimulus and in the higher order
structure be small (negative weights to mean diss 3 and sd d order 2). The linear
SVM implies the last note should be the lowest, whereas the logistic model finds the
last note should just be lower than the note previous. The weights of the SVM also
hints that there should be a small number of interval jumps along with the presence of
the perfect fifth is conducive to the illusion. The logistic model differs here and instead
uses onset variability as an indicator for regular rhythms, and strongly imposes less
variance of the dissonance in the higher order structure (negative coefficients to the
sd d order 3 feature).

A full summary of all the feature coefficients for the linear models, along with the selected
features for the non-linear kernels are presented in Table C.1.



Chapter 6

Validation Experiment

Repetition legitimises,
repetition legitimises,
repetition legitimises.

— Adam Neely

We conducted an experiment similar to previous studies to collect further data on the
illusion and to validate the models from Chapter 5. The experiment is designed to test
a diverse range of stimuli from different vocal sources, languages and non-vocal sounds
to see how the Speech-to-Song illusion materialises.

6.1 Setup

Experiments from previous Speech-to-Song studies have largely followed a similar format
since the original Deutsch et al. (2011) experiments. Typically, the stimulus is repeated
between 6 to 16 times and the participant rates how ‘song-like’ they perceive the speech
on some scale after each repetition. Earlier experiments included presenting the phrase
in its original context (e.g. Vanden Bosch der Nederlanden et al., 2015) before the
repetitions of the isolated segment, whereas some included additional stages to the trial
where the participant had to score the stimulus both before and after the repetition
stage (Rowland et al., 2019). The scale is often a five point ‘Likert’-like scale as used
in the original study, but later experiments used a 1 to 7 scale (Margulis and Simchy-
Gross, 2016), 1 to 10 (e.g. Tierney et al., 2018a), or a continuous slider (Cornelissen
et al., 2016). In some experiments, an additional step was to be completed after the
trial, such as in Falk et al. (2014) where the user has to solve a short mathematical
equation in order to distract them between successive trials.
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Most trials were held at a controlled environment, however a handful were online (in-
cluding the later experiments of Tierney et al. and the study where the mcg dataset
was obtained from). These have the additional challenge of making sure the quality of
the data is adequate. Tierney et al. included ‘catch trials’ where phrases that started
out as speech and switched to a sung version of the same phrase so that if participants
did not rate these catch trails as sounding like singing then their scores were removed.

Our experiment was held online in a similar fashion, with a basic setup that presented
a random selection of the stimuli, one at a time, for the participant to rate on a sliding
scale. Recreating the experimental setup of Cornelissen et al. (2016) permits us to reuse
the same aggregation scheme and analysis methodology in Chapter 4. The experiment
also collected some additional data that is beyond our study but that could be of interest
in future research. This includes the results of a short questionnaire before the trials
began that collects information on the languages the participant speaks, as well as the
sliders position over time during the complete trial.

6.1.1 Material

Ninety-eight hand-selected stimuli were sourced from public domain sources and fall
under fair use. The stimuli for this new experiment were selected in part to align
with those from past experiments, as well as to the mcg data that the models have
been fitted to. This way we a conducting a sort of reproducabilty study to coordinate
the results we obtained, and the models are not disadvantaged by being evaluated on
data that is vastly different to what they have been . Nonetheless, we include some
other non-speech stimuli to test if the models have generalised to other sources of the
illusion, specifically environmental sounds as Simchy-Gross and Margulis (2018) found,
even though we expect the models to be unreliable on such data.

The speech samples fall under several categories of speech style — natural conversation
in an interview setting, spoken word, and poetry, along with two non-English categories
Japanese and Mandarin. Although not the main hypothesis of this study, we select
different stylistic vocal samples to see if certain manners of speech invoke the illusion
stronger than others. In past experiments, vocals were sourced from audiobooks as these
recordings provide a clean and professional audio quality. Twenty-one stimuli from two
different audiobooks are included in this experiment. However, in such context the
speaker does not have a natural speech style — theatrical embellishments that are used
by the voice actor to tell the story could account for particular rhythmic or melodic
traits within the speech sample that could elicit the illusion. To test this, we also col-
lected twenty-eight stimuli from interviews and podcasts, where the speakers (1 female, 2
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category count sources

Vocal 86 9
— English 65 7
—— (interview 28 2 )
—— (audiobook 21 2 )
—— (poetry 10 1 )
—— (mcg 6 2 )
— Non-English 21 2
—— (Japanese 9 1 )
—— (Mandarin 12 1 )

Non-Vocal 12 12

TOTAL 98 21

Table 6.1: Breakdown of the stimuli used in our experiment, indicating the number
of each audio type and the number of audio sources they were obtained from.

male) have a more casual and natural tone and rhythm in their vocals, whilst still being
professionally recorded. We also collected ten stimuli from a recording of poetry (female
speaker), as these are expected to have even greater level of intonation and rhythm as
the audiobook recordings that could be perceived as musical. It has been shown that
language difference between listener and vocal source can boost the illusion (Margulis
et al., 2015), so we include twenty-one non-English speech (9 in Japanese, 12 in Man-
darin) to test if these effects can be reproduced. The choice of one tonal language and
one non-tonal is to align with Leung and Zhou (2018) study that found that tonality
did not show an influence in on the illusion, which we will test for here.

We also include 12 environmental sounds in the collection. These include rhythmic
sounds (two water dripping sounds, ice cracking, computer keyboard, walking in snow),
non-human vocals (sheep, whale and bird song), and other timbral sounds (kitchen door,
jungle, car engine and shovelling sounds). Similar sounds have been shown to be highly
transforming on repetition in both Simchy-Gross and Margulis (2018) and Rowland et al.
(2019), so we tested if these particular samples received higher ratings than the vocal
stimuli.

Finally, we include six highly transforming stimuli, 4 from at and 2 from uva, for
validating the experimental procedure, and to check if the ratings from this experiment
align with those of the previous study. We denote this new collection of stimuli al,
summarised in Table 6.1. All audio is encoded as a mono signal WAV file with a sample
frequency of 44.1kHz at 16 bit depth, and the average length of a stimulus is 1.26 seconds
(σ = 0.63).
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6.1.2 Procedure

We constructed a publicly accessible, tailor-made webpage specifically for this experi-
ment that is hosted on a private domain secured with TLS certificate, where we have
complete control of both the client side frontend and backend server. This way we can
control details on how the stimuli are presented to the participant and how we collect
and organise the data. The server was created with Node, a Javascript runtime envi-
ronment suitable for asynchronous web hosting, which serves the experiment and audio
files, then collects the user submitting rating data and stores the information in a CSV
file for later parsing.

On first entering the webpage, the user was presented a declaration of consent that
the participant must agree to before continuing. This declaration contained contact
information with the authors and the ethics committee of the Faculty of Humanities of
the University of Amsterdam, along with a privacy statement. The checkbox had to be
checked to move onto the main experiment. It is at this point a randomly generated,
anonymous user ID was generated that was to be sent with the other data so the server
can collect the ratings for different participants separately1.

Next, the user was asked to fill out a short form on their language proficiency. Four
checkboxes labelled English, Dutch, Japanese and Mandarin along with a text field
labelled ‘Other’ were presented for the participant to enter the languages in which they
are fluent in (e.g. able to have a daily conversation with). This information was collected
and sent with every rating the user submits.

The next screen briefly introduced the illusion and the procedure of the experiment
and the aims of the research. Here, there was a demo of the experiment along with a
walkthrough of what the participant should be expected to do. A text encouraged the
user to wear headphones and set the volume to a comfortable level, and to make sure
they are in an environment where they will not be disturbed. A button labelled ‘Demo’
invited the user to listen to Diana Deutsch’s original transforming vocal sample, with
a text hinting that the speaker may begin to sound as if she is singing the phrase. We
presented a slider that mimics the slider they will use in the full experiment and asked
the participant to move the slider to a position to rate the sample somewhere between
Not Musical and Very Musical, along with a submit button to proceed. This screen
served three purposes — first, to get the participant accustomed to the procedure, and
by presenting a strong example of the illusion become aware of what to expect from a
transforming stimulus. This enabled the user to have some reference on how to rate

1We do not store this number in the user’s browser session, so if they refreshed the page or navigate
away and return, this number is reset and they will appear as a different participant to the server.
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(a) start of trial (b) countdown

(c) during trial while stimulus is playing (d) final rating

Figure 6.1: Screenshots of the experiment box at the four main stages of a trial.

transforming stimuli and to calibrate their own internal rating scale. Finally, unknown
to the user, the score they give Deutsch’s sample was recorded and used in our analysis
to assess how the other stimuli rate in comparison.

After the demo screen, the user was taken to the main experiment. This page consisted of
a detailed set of instructions, and a box that contains a button and a slider, which is the
interface to the experiment. Both ends of the scale are explained — Not Musical if the
sound is exactly like natural speech or some other non-musical sound, and Very Musical
if it sounds exactly like singing or that it comes from a musical piece. The instructions
were as follows: first, the participant must click ‘Start’ to begin the trial (Figure 6.1a),
after which a three second countdown begins before the audio starts playing (6.1b), and
the slider is initialised at the ‘not musical’ end of the scale. A stimulus is selected at
random (without replacement) and repeated 8 times with a 1 second pause in between
each repetition. During this time, the user was encouraged to drag the slider to the
position they feel accurately reflects their perception of the stimulus, and were told that
they can change the position at any time and as many times as they feel during the trial
(6.1c). After the eighth repetition, the sound stoped and the user was asked to move the
slider to their final rating, before confirming this choice with a ‘Submit Rating’ button
(6.1d). This ended the trial, and the process was repeated from the ‘Start’ phase.

The participant was asked to complete at least 15 trials which would take no more than
fifteen minutes to complete, and invited to continue rating more stimuli if they so wished.
After the fifteenth trial, a thank you message was displayed for their participation. When
the user was finished with the experiment, they simply had to leave the page or close
the window to end the experiment.
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Data was collected throughout the trial, with the slider position recorded every 100ms
during the repetitions of the stimulus. When the user clicked ‘Submit Rating’, a data
package containing the user ID, the languages the user speaks, the score they gave to
Deutsch’s stimulus, the current stimulus name, the continuous slider rating, and the
final rating was sent to the server to be processed and recorded. On the server side, a
CSV file was created with the user ID (if the file does not already exist) and this data
package dumped into the file. This was done after every trial, such that even if the user
does not complete the full fifteen trials (e.g. due to loss of internet connection), we still
received the data for the stimuli that they were able to complete.

6.2 Results

6.2.1 Rating Distributions

A total of 55 participants, mostly associates and colleagues of the authors along with
some people of the general public, submitted 1198 ratings (average 21.8 stimuli per
person). Each stimuli received between 5 and 19 individual scores, with an average
number of 12.2. One participant opted to complete all 98 stimuli. Across all the stimuli,
there is a wide spread of final rating scores for each one, as illustrated in Figure 6.2,
even broader than the mcg data with an average standard deviation of 0.29 (compared
with 0.22) over each stimuli. The final score distribution is far more uniform than
on mcg, although still skewed to the lower end of the scale (compare with the boxplot
in Figure 4.1). Similarly, participants rated Deutch’s stimulus over a wide range between
0.08 and 1.0, with a mean rating of 0.63 (σ = 0.26). Unsurprisingly, the highest rated
stimuli by median were those also from the mcg, however these also received scores
across the full slider range. Next, the environmental sounds have the highest ratings
from the new stimuli, just above the non-English samples. The vocal recordings collected
from audiobooks received the lowest ratings with a mean of 0.30.

The top four of the highest rated stimuli by mean final score in this experiment are the
stimuli from the mcg dataset (three also from at), and another four of the environmental
stimuli occupy the top ten, with only two of the new vocal stimuli making it, suggesting
that the new vocal stimuli are not particularly strong at invoking the illusion compared
to the older dataset. Only five stimuli were on average rated higher than the rating the
participant gave to the Deutsch stimulus — three vocals (two from at, one from uva)
and two environmental sounds (birdsong and water dripping samples), signifying that
the original stimulus securely invokes the illusion.
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Figure 6.2: Enhanced boxplots of all the ratings collected in the experiment, and
breakdown of the ratings within each stimulus category. Additionally, boxplot of the

ratings given to the Diana Deutsch stimulus on the right.

Using the different aggregation methods and their threshold levels obtained from Sec-
tion 4.2, the percentage of stimuli that we label as transforming changes considerably —
using the mean final rating score with a threshold 0.36, 53% of the al stimuli transform,
whereas taking the median final score (threshold 0.35) identifies only 38% as causing
the illusion. For consistency however, we aggregate the ratings in the same manner we
prepared the mcg data by taking the mean of the top three scores of each stimuli to
use as a final measure of the extent in which it transformed, and use the same threshold
value (0.46) to label the transforming stimuli. Under this scheme, 82% of all the ex-
perimental stimuli are classed as transforming, much greater than that of mcg (44%),
and all environmental stimuli except one (jungle noises) are labelled as such. We utilise
the six stimuli that are common to both experiments to verify if the scores align with
the previous experiment, and we find that the mean top three score are quite consistent
across both studies (Figure 6.3), suggesting that despite the variance in scores, there is
little to no difference between the groups of participants in both studies or little effect
of systematic differences.
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Figure 6.3: The mean scores of six stimuli in mcg, plotted against the rating they
were given in this experiment. Points on the diagonal line have the same score in both

experiments.

We check if the language of the stimulus has any effect on participants ratings. The mean
final rating of the English stimuli is 0.37, and 0.41 for the non-English, however a Mann-
Whitney test to check if these distributions have the same mean yields a p-value of 0.060
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and therefore cannot reject the hypothesis that they are equal (for α = 0.05). This holds
true for other rating schemes, although for the mean top three score the p-value of 0.054
suggests there is a weak confidence the distributions are different. A similar conclusion
is found for the stimuli across the different speech styles of the English phrases — there
appears to be no significant differences between the rating distributions for the poetry,
audiobook or interview samples when compared with the rest of the English stimuli,
suggesting that the illusion is independent of the speech context. However, these subsets
are quite small and not highly diverse in themselves (e.g. the poetry stimuli are all from
the same source), so a larger study on this line of linguistic enquiry could yield a different
result. Between the two non-English language stimuli however, we find that Mandarin
has a significantly higher mean to the scores of the Japanese stimuli (p = 0.004).

6.2.2 Feature Analysis

Before validating the models on this data, we measure the distribution of the features
of these new stimuli and compare them to those from Section 4.1. First, we look at the
correlations between the features and the mean top three ratings. Unlike the mcg data,
the only significant correlations are in many of the dissonance features (Table B.2, last
column), which all have negative values, suggesting more consonance in the transforming
stimuli. None of the significant features from mcg carry over to this new set of stimuli,
and characteristics such as stability, bayesian distance and key fit have no signif-
icant correspondence with the score on the complete set of stimuli. Since many of the
algorithms in the feature extraction are optimised for the human voice, we conduct the
same analysis on just the vocal stimuli, however the conclusions are the same. Changing
which aggregate score we make the labelling with also does not alter this result.

Using the Kolmogorov-Sminov test, we find the features that have significantly different
distributions between transforming and non-transforming vocal stimuli. This includes
the mean and maximum dissonance measures for both the whole self similarity matrix
and the last note, the percent pitched feature and mean diss 3. This last feature is
the only one to also appear significant in the mcg dataset (see Section 4.3). Running
this same analysis for all the stimuli (including the environmental sounds), the three
dissonance order features also become significantly different.

Finally, we compare directly the two datasets to find any major differences between
the two that could explain the discrepancy. Conducting a KS test on the distribu-
tions of features in mcg and the new vocal stimuli (al) reveals that only 3 of the
33 features have significantly different distributions (for α = 0.05), namely stability,
last note length and sd d order 1. Further investigation finds that generally the new
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stimuli have more stable F0 contours than those in the mcg dataset, which coincides
with the higher percentage of transforming stimuli in the new set, lending support that
this feature has an impact on the scores. On the other hand, bayesian distance, i p5

and percent pitched are some of the features used by the models that have a similar
enough mean to pass the test. This suggests that the training data is mostly represen-
tative of the stimuli obtained for this study, however since more of al transform there
is a larger proportion of stimuli that have features pertaining to the illusion.

6.2.3 Model Predictions

Finally, we evaluate the models that were selected in Section 5.3 by measuring their
effectiveness at predicting the new stimuli. This will test not only if the models have
generalised well, but highlight if the features we have extracted are indeed sufficient to
predict the illusion. Table 6.2 summarises each of the models performance on both the
vocal subset and environmental sounds, plus the complete set of stimuli, along with two
baselines and the two ensemble models. Evaluation metrics are the (balanced) accuracy
and F1 score.

vocal environmental all
model B. acc. F1 B. acc. F1 B. Acc. F1

random baseline 0.500 0.317 0.500 0.159 0.500 0.300

logistic 0.548 0.631 0.636 0.429 0.543 0.608
SVM - linear 0.651 0.629 0.636 0.429 0.642 0.605
SVM - RBF 0.497 0.538 0.500 0.000 0.481 0.487
SVM - poly-3 0.513 0.396 0.591 0.308 0.514 0.385
SVM - sigmoid 0.533 0.606 0.682 0.533 0.537 0.597

ensemble (all) 0.526 0.593 0.591 0.308 0.518 0.562
ensemble (SVMs) 0.555 0.598 0.591 0.308 0.546 0.567

Table 6.2: Model performances on the vocal stimuli and on all stimuli. Stimuli
labelled according to mean top three scheme. Random baseline assigns classification

with probability equal to the proportion of positive examples in the data.

As expected, most models score higher on the vocal stimuli than when they are evalu-
ated with the environmental sounds included, with the exception of the polynomial and
sigmoid SVMs (although only by a small margin). Every model except the RBF-kernel
SVM score higher than random baseline for both metrics. Similarly to the model evalu-
ation in Section 5.3, the ensemble of SVMs outperforms the collective of all the models.
The linear models surpass the scores obtained by the non-linear kernels — the logistic
model achieves the highest F1 score, whereas the linear SVM has by far the greatest
balanced accuracy score, and is the only model to obtain a score comparable to how
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it performed in the validation procedure (Table 5.1), signifying that it has generalised
rather well.

On the environmental stimuli, the models have mixed success. Both linear models
achieves an accuracy of 0.636 (F1 = 0.429) each, which is far greater than the random
baseline (0.500, 0.153) on this subset, whereas the RBF model simply rejects all these
stimuli and gains an F1 score of 0. However, the sigmoid-kernel SVM performs the
best on this subset. The reason both ensemble models have the same score is due to
the logistic and linear SVM both make the same decisions, so the logistic model has no
influence on the outcome of the ensemble.

We can see a modest generalisation of the models according to this validation study,
particularly with the linear SVM standing out clearly, showing consistent signs of some
predictive inference from the features we have extracted. This model also had the lowest
variance in the accuracy score across folds in the evaluation procedure (Table 5.1), and
this is reflected here. Other models which showed promise in the selection process failed
completely on the new data, specifically the RBF and the ensemble methods. As there is
room for some improvement in all of the models scores it is clear there are other factors
to the illusion beyond what we have measured from the audio.



Chapter 7

Discussions and Conclusion

Where words leave off, music begins.

–– Heinrich Heine

We studied the Speech-to-Song illusion using automatic and computational methods to
obtain the music hidden within the voice, and analysed the properties and qualities of the
audio in order to assess if one could predict how the illusion manifests from these features
alone. This involved developing an algorithm to derive a sequence of notes from the raw
audio data, and from this making a series of measurements on this melody. We found
that some features established in previous research hold, whilst also demonstrating new
measurements that captures some characteristics of the melodic phrase also contained
effective information. Data models used a handful of these features to successfully predict
if an audio stimulus will transform into song or not, significantly above baseline. We
then ran a validation experiment on a fresh set of stimuli to collect a large assortment
of new data, and found that one model in particular maintained its predictive power on
these new sounds.

7.1 Feature Methods

To start, Chapter 2 detailed an algorithm extended from work by Cornelissen (2015)
that performs well at extracting the melody that a listener could hear from natural
human speech. Such an algorithm provides useful for the study of the Speech-to-Song
illusion. The architecture of the method has two main steps — segmenting and identi-
fying the note boundaries, then computing the potential pitch values of the notes. We
parameterised this algorithm and evaluated it to find that it performed better than the
original formulation and make agreeable predictions of the melody in the illusion. It is

66
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important to make an accurate and objective transcription of the melody as this forms
the basis of almost all the features we extract later.

Nonetheless, there are a few possible improvements that can be made. First, it is clear
that this procedure is designed and optimised on the human voice and that it is unlikely
to perform well on non-vocal sound samples, (as evident in Table C.1). The F0 pitch
tracking algorithm in Praat assumes a priori that the pitch will be within the typical
vocal range of a speaker, and so will produce unstable results on sources that are well
outside of this range. Other more general pitch tracker (for example the neural network
algorithm of Kim et al., 2018) are available. The pitch contour itself is susceptible to
octave errors that should be dealt with — more advanced melody extraction algorithms
also make use of multiple candidate frequencies to optimise the probability of selecting
the correct note (e.g. Ryynänen and Klapuri, 2006). Segmentation of notes is built
around phonetic features that pertain to physical facets of speech, whereas there are
other characteristics of sound that could indicate note boundaries such as rhythmic and
temporal ques or sharp changes in pitch or timbre. The algorithm could be made more
universal by using information contained in the pitch contour p to further segment notes,
for example if there is a large step from one flat region to another then this should also
count as a note boundary. Rhythmic qualities are somewhat encoded in the intensity
values I, where peaks invoke some metric structure, however implied rhythm is not
accounted for that could be indicate note onsets. Making the predictions about which
notes are perceived in a given pitch contour could be improved further — it was observed
that the transcribed note pitch seemed to correlate more with the pitch values at the
end of note, and less at the beginning, as if p takes time to ‘arrive’ at the note value.
This could be incorporated by weighting pitches at each time step by their position
within the note which could correct unstable and fluctuating pitch curves when taking
the mean.

Glissando and pitch slides are not considered by our algorithm — these are stylistic
features used extensively by musicians and composers throughout most music and can
be imitated by the human voice, however representing this information is not possible
in the current formalisation. Although remaining limited to the stable notes is a ma-
jor simplification of melody, it can be argued that gliding between notes is merely an
expressive feature of melody, and not necessary — Meyer (1989, page 14) suggests dy-
namic changes are a secondary parameter in music, different from the primary features
of melody, harmony and rhythm. This makes intuitive sense, as it is possible to play
on a piano (where note slides are uncharacteristic) a part written for trumpet and it
still be recognisable as the same melody, for example. Hence, there is perhaps little
motivation to include this, and to keep the melody representation as simple as possible.
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The algorithm also assumes the music that is contained in the audio is strictly mono-
phonic, where there is only one note at any given time with no background harmony
or chord constructions. With voice, a human can only produce a monophonic signal so
this simplification is valid, but of course this does not extend into the larger domain of
sounds and music. Automatic polyphonic music transcription gathers a lot of attention
in the MIR field (e.g. Cemgil et al., 2003, Ryynänen and Klapuri, 2005), which is not
surprising considering the vast collection of music is polyphonic in nature. While there
exists several successful algorithms for this task, they suffer from the same issues as
previously mentioned, namely their assumption that the audio source is already music,
with some even requiring information on the number and type of instruments that make
the sound (as in Grindlay and Ellis, 2011).

Next, we outlined the features that were measured to make the classification of the
Speech-to-Song illusion stimuli. These include well established features, notably the
measurement of stability and the key fit of the notes, as well as new ideas such as
the rhythmic measures and the introduction of dissonance as a metric. Most of these
measurements test basic and higher level features of melody (namely rhythm and note
values), whereas more detailed qualities such as timbre are not included. For example,
Zhang and Ras (2007) outline a large collection of timbral measurements for use in
classification of musical instruments, and could provide inspiration for this task, at least
for a more general model predicting Sound-to-Music. As Simchy-Gross and Margulis
(2018) observed, breaking up and shuffling the environmental stimuli did not break the
illusion (when it did to vocals), perhaps suggesting that timbre of the sound could be
the cause for the illusion to materialise in this case, and not some melodic or rhythmic
characteristic.

A significant measurement we made is the idea of the extracted melody’s distance from
one that is more likely to be composed. The idea is to measure how much do the notes
would have to be shifted to arrive at a more typical melody that could be contained
in the audio. We used a Bayesian model of melody to evaluate similar note sequences
that are around the one we extract and constrain this evaluation to sequences that
are possible given the pitch contour, then used a distance metric to compute the fi-
nal bayesian distance feature. The Bayesian approach of finding ‘typical’ music has
some inherent bias and issues, as stated at the start of Section 2.3. The most imme-
diate problem is assuming a Western framework of music theory in the construction of
keys, and in quantising notes to fit a traditional piano keyboard. Listeners of different
cultural backgrounds can perceive different tones that fit better to their traditional mu-
sical systems (Curtis and Bharucha, 2009), and so enculturation effects the melody that
is perceived. However, we chose to accept this drawback for lack of a more universal
model, and stick to Western music theory for consistency. Quantising notes to a 12-tone
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equal temperament system is also not ideal for similar reasons, however it is the stan-
dard approach of discretising note values for representation in a computer model and
is used extensively in the digitisation of music. Assumptions about the reference pitch
A4 = 440Hz could also be relaxed relatively easily by shifting all the notes up in pitch
by a small fraction until the distance between extracted notes and quantised notes is
minimised1.

Of course, the Bayesian model of melody can be improved further in several ways, for
example extending the sequence of previous notes in the prior (by generalising the prob-
abilities in Equation (2.10) to something like P (ti|ti−1, ti−2, . . . , c, k)), or extending the
key profiles in some way to include other (non-Western) musical scales. The model also
only works with quantised pitches, due to Table 2.3 being a discrete probability function.
One approach that would allow unquantised, ‘out-of-tune’ notes is to define a continu-
ous probability distribution that interpolates the points of Table 2.3 and renormalised to
produce a proper probability mass function. Rhythmic or metric qualities are also not
considered by the model. Presumably, note onsets that fall on some simple grid division
pattern could be considered more ‘musical’ in the sense that that would be more like
composed melodies, than those with more ‘random’ timings. Future work could take this
idea and incorporate a way of measuring some statistics on the temporal divisions and
note lengths in composed music, and devise a distance measure to make comparisons
of the derived melody and the maximum-a-priori melody tMAP. An alternate model of
melody, specifically one that captures a broader scope of musical traditions more than
just Western folk song, would be highly desirable, as the current model is limited in this
way. For example, simple sequence models such as n-grams or Hidden Markov models
have been used in previous research for predictive tasks (e.g. Cherla et al., 2015, Conklin
and Witten, 1995, Groves, 2013, Pearce and Wiggins, 2004, Whorley and Conklin, 2016,
to name a few). IDyOM (Pearce, 2005) is a recent and powerful probabilistic model of
the structure in music, that predicts musical events after exposure to some corpus of
music. Computationally, checking all tone sequences is the most expensive operation
so smarter heuristics in the optimiser could improve performance or allow for broader
search space, which in turn would yield more probable tone sequences. The search pro-
cedure however is also trivially parrallisable by giving each process a separate chuck
of the search space each, and could offer some significant speed-up, permitting a much
broader search space.

We also outlined three rhythmic measurements that capture some detail of the intricacies
of potential meter in the melody. However, reducing the complex hierarchical nature
of metre and the diverse range of rhythmic divisions to a small set of simple measures
that quantifies all the information is no easy task. Currently, our measures only really

1We would only have to shift the pitches by at most one semitone.
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captures the steadiness and consistency of onsets, and not the more intricate complexities
that rhythm can contain. Neither simple nor highly structured rhythms can be said to
be more or less musical in itself, so it can not be expected that these features alone
can signal the Speech-to-Song transformation. The repetition that is necessary to cause
the illusion artificially invokes a meter, and since “repetition legitimises”, any complex
meter can be legitimised in a musical sense, so it remains to be seen if a feature of
rhythmic complexity can actually be predictive. Nonetheless, they are included since
previous results (e.g. Falk et al., 2014) had some success making the connection of simple
rhythms and the illusion.

The motivation of the dissonance measures is to capture something more than just
the melodic structure, but to attain some aspect of the ‘musical idea’ that a melodic
phrase tries to convey. It is hard to define exactly what such a meaning could express,
but as the build up of tension and release are fundamental devices used by composers
to attain an emotional response from the listener, dissonance as a measure of tension
offers a possible method of quantifying these dynamics. Alternately, models of tension
such as Farbood (2012) have shown promise of predicting musical tension as provided
by listeners in perception experiments. Nonetheless, some research on tension show
correlation with roughness of the sound (Bigand et al., 1996, Pressnitzer et al., 2000),
which the dissonance measures we used are based upon. Unfortunately, some of the
dissonance features are less intuitive to observe when listening out for them in the
stimuli, especially the measurements on the higher order structure, and that it is hard
to consciously hear what these are measuring exactly. They are nonetheless designed to
be sensitive to note ordering and to quantify in some way not only the internal melodic
structure in a musical phrase, such as the harmonic hierarchy, but if there contains a
complete musical phrase that could be conveyed as the rise and resolution of musical
tension. There are however drawbacks to this measurement. When comparing two notes,
these are taken in isolation from the other notes in the sequence, and the measurement
is independent from the context of key — in general, two notes can sound more or less
harmonious depending on the condition of the surrounding contextual notes and their
placement within a key. The quantifying of dissonance in our method is also sensitive
to the accuracy of the note extraction algorithm, and assumes the pitches of the notes
are precise.

7.2 Data Analysis

In order to classify the stimuli we have as eliciting the illusion or not, we collected the
ratings obtained from a previous experiment by Cornelissen et al. (2016, which we named
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mcg for convienece) and devised a scheme to assign the correct labels. This required
attempting to organise highly noisy data by essentially discarding the lowest scores given
by participants and only taking the mean of the top three scores. By only focusing on
the top scores we have a very optimistic expectation that the speech transforms, since
it takes every participant to give a low rating for our scheme to also rate it low, and
we are essentially giving the data the benefit of the doubt. This could produce an over-
representative distribution of transforming labels — nearly 50% of stimuli are labelled
as such even though in practice a randomly selected segment of speech is unlikely to
transform. However, it is unclear the selection process of the mcg study, so there could
have been a bias to select samples that are likely to be heard as song. Alternately,
instead of using the top three, the top 50% scores could have be used that would have
taken more data points into account. We used Figure 4.3 to justify that the strategy
preserves the data of the at dataset, but we could go further with this idea — by using
the labels of the at data we could optimise the thresholds, cutoffs or parameters in an
aggregation scheme such that it segments the stimuli as close to the original labels as
possible. Removing 30% of the least decisive stimuli to produce a bimodal distribution
is also unsatisfying — there could be information contained in these stimuli that would
produce better segmentation in feature space. It could be beneficial to instead remove
the stimuli that have the highest variance amongst their scores, as in these cases there
is a lot of disagreement between the participants whether it transforms or not, so to
label these stimuli with any confidence is ambitious. An alternate approach of parsing
the data would be to not aggregate the scores for each stimuli, but rather have every
rating as a unique data point. This way the model fitting procedure can decide which
data points are relevant and carry the necessary information, and which are outliers, in
an unsupervised way, rather than creating our own strategy.

After the data was sorted, we checked if any of the significant findings from past studies
can be found here too. We conducted the same statistical test as Tierney et al. (2012)
and found the same results hold in both their dataset alone and on the full mcg dataset,
namely that the distribution of stability scores have significantly different means for
transforming and non-transforming stimuli. Unfortunately, the distributions fail to pass
the Shapiro-Wilk normality tests, so the significance of these results are dubious. By
observation, we can see that even if the means differ significantly, this difference is small.
As Figure 4.5 illustrates, the full range of stability values are represented in both
the illusionary stimuli and non-transforming for the mcg stimuli, and the distributions
themselves contain a lot of overlap with each other except for the peaks which are offset
slightly. This means that given a speech sample with a highly unstable F0 contour, we
cannot say with much confidence whether it invokes the illusion or not — only that it
is slightly more unlikely. Nonetheless, the more powerful Kolmogorov-Smirnov test that
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is appropriate for these distributions did find a significant difference between them, so
their findings on stability hold up. This test was conducted on all the other features,
and found a handful which the test also suggested as having different distribution when
measured on transforming or non-illusionary stimuli, including some new features.

Similar conclusions are drawn from the investigation into the correlations between fea-
ture values and the final ratings. We find r in all features to be rather weak, even in the
best case (the maximum correlation value has a magnitude of 0.27), so we are hesitant to
claim any strong evidence that any feature alone is necessary or particularly convincing
to the illusion. This is not surprising, as observed above the distributions of the highly
rated and lowest rated are largely similar in their support and location of the peaks. It
can be seen in Figure 4.6 that the scatter plots are mostly a cloud of points, and that it
is a few outliers are actually responsible for the correlation value to be non-zero.

From this we can conclude the not one characteristic is sufficient for the illusion to occur,
not even stability — at least not from those that we have measured. This suggests
the illusion occurs through some interacting combination of characteristics, and that a
stimuli requires multiple conditions to be ‘just right’ for the perceptual shift to occur.
We also expect that ultimately, transforming stimuli probably occupy multiple clusters
in feature space, as evident from the way non-speech stimuli that have very different
features can also invoke the illusion. For example, the raindrops sound in Simchy-
Gross and Margulis (2018) is reported as becoming particularly musical on repetition
because of its rhythmical content, however we see that none of the rhythmic features
are sufficiently telling, demonstrating that our results are limited to vocal stimuli.

7.3 The Models

We fitted a diverse collection of models with both linear and non-linear kernels to de-
scribe the data, and used a procedure to obtain a set of features for which each model
gave optimal performance. We choose model types that are flexible and that work well
with modestly sized, noisy datasets. In particular, a family of SVMs were selected for
their performance and generalisability on high-dimensional data, and do not require any
assumptions on the distribution of each feature.

There are many other models we could have used — for example Naive Bayes is a simple
but effective model that requires very little data to train. Despite in its derivation the
assumption that the features are independent, a premise rarely true in real tasks, it
can still perform remarkably well even when this does not hold (Zhang, 2005). Decision
trees, as used by Graber (2015) work well as a classifier and again require no assumptions
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about the data, however initial attempts at fitting this type of model succumbed to
either extreme over-fitting or woeful under-fitting, and so were not deemed adequate
for us. Random decision forests (Breiman, 2001), which is essentially an ensemble of
decision trees, elevate this problem by combining multiple trees that ‘specialise’ on
certain inputs, and are used widely in practise as they often out perform other methods,
including SVMs (Caruana and Niculescu-Mizil, 2006). While there is also a method to
rank feature importance in these models (outlined in the original paper), just as with the
other ensemble methods it becomes much harder to interpret how the feature contributes
to the classification.

The feature selection method we designed is provisional for the data that we have,
and the evaluation metric was composed to obtain desirable properties of the fitted
model. We departed from more standard procedures of feature selection as we have
the unique opportunity to utilise other data and we take advantage of these additional
stimuli to produce a model that not only fits the data well but acts closely with listeners
behaviours. The most interesting of these extra material are the manipulated stimuli
of Groenveld et al. (2019), where 15 original speech clips are digitally altered such that
listeners are ultimately more likely to rate them as illusionary. All the models except
the polynomial kernel SVM showed a significant increase in their probabilistic output
between the unaltered and highest manipulated stimuli, exhibiting the behaviour we
desired. The models are sensitive to some of the features that were altered in the
manipulated stimuli, so while it is expected that the classifier’s outputs reflects these
differences, the fact that the models successfully label the altered stimuli as more likely
to transform shows that these features are utilised correctly. We tested if this model
evaluation metric is worthwhile by evaluating how the model which maximises the K-
fold accuracy score alone behaves. For example, we found a linear SVM that managed
a mean accuracy score of 0.70, however not only did this model score the manipulated
stimuli only marginally higher than the unaltered versions, but it also highly rated
white noise as transforming and did not judge the Diana Deutsch sample as illusionary.
Clearly, this is a rather unsatisfying model since it fails at some basic quality checks,
and demonstrates that our selection method returns a more favourable model, albeit one
with a slightly weaker accuracy score in general. As we wish to model human behaviour,
rather than engineer a powerful classifier, this compromise is justified.

That is not to say the evaluation score is ideal, there are certainly improvements and op-
timisations that could be made. For example, the weights between the different metrics
that make the final score (5.2) could be tuned further, as the current formulation gives
equal weight to the additional scores that are not calculated from the K-fold evaluation.
Quite a large proportion of the final score is based on the Diana Deutsch stimulus —
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even though ultimately the model is evaluated on 220 stimuli, this one stimulus con-
tributes one-sixteenth of the final score alone, and the same goes for the white noise
sound. This could be too harsh as even the best models succumbs to false negatives,
and it could be that there is a slightly better model that happens to falsely reject the
Deutsch stimulus for which it is penalised too much and so ranks lower. In hindsight,
this could be reduced by creating a small collection of known musical samples (e.g. of
actual singing, an instrument playing etc) and taking the average score of these as a
metric to be included in the final score. The search procedure itself is quite robust and
offers a great speed-up compared to a brute force approach. There are only two hyper-
parameters that should be decided beforehand, namely the feature limit (essentially the
depth of the search) and the top number of candidate feature sets to maintain (the search
breadth). Of course running the algorithm with higher parameters and exploring a larger
space could yield better results, however it is unlikely to find a markedly higher per-
forming model — there appears to be diminishing returns when increasing the number
of features as evident from the fact that four of the five models required less than the
number we searched up to (see Table 5.1). Besides, increasing the number of features
for a minor gain of the final score goes against Occam’s razor as a heuristic in scientific
modelling, where a simpler model is more desirable.

For both the ensemble models we decided to collect the best of each model type, rather
than searching for the best combination of ‘expert’ models that collaborate together.
This would require searching over all possible combinations of feature sets over every
model to evaluate how they perform, the total of which is the current number of evalua-
tions raised to the power of the number of models in ensemble — a search space far too
large to be feasible. Alternately, we could treat the ensemble as a single model, where
each of the component models all work with the same feature vector, and so the feature
selection procedure would be the same as the individuals. This is a more typical ap-
proach in machine learning, however in our case searching for the best ensemble method
is not the priority, as this would not reveal much about how the features combine to
make the classification. Instead, we use the ensemble as a way to assess how much the
models agree with each other — if the collection of models together performed only at
baseline then this would imply that classifiers were at odds with each other and there is
little in common among their predictions. On the other hand, if the ensemble achieves
a score that is the average score of the individual models then this would imply that all
the classifiers are well aligned in their decision boundaries and make similar predictions.
In this case the ensemble of SVMs attained the highest score, more than any one model.
This indicates that not only are the models coordinated, but that when there are differ-
ences in their predictions they somehow combine together in a beneficial way. While this
is normally welcome in machine learning practice, unfortunately it makes interpreting
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its operation difficult. For example, the polynomial SVM is the only model to use the
feature npvi, however it is hard to know if (or even when) this particular feature is ever
used in the ensemble to make a prediction, or if this base model relies on this feature to
make a deciding vote.

Of the two linear models where the coefficients can be interpreted we find that both
the logistic model and linear SVM both assign parameters with the same sign for the
features they have in common (Table C.1), where the sign suggests how the value of
this feature impacts the prediction. This indicates some consistency between them
and that there is useful information contained in these measurements. For example,
a negative coefficient for stability means that indeed stable pitch targets push the
models decision towards classifying the stimulus as transforming, and the magnitude
informs how large of a contribution it makes. We found that the percentage of the
stimulus that is pitched is the strongest indicator for both linear models, where the
more a pitched note is present in the audio the higher the likelihood of transformation.
At first this seems quite intuitive, after all, for a melody to exist there needs to be pitch,
and if the entire sample is pitched then it is easy to conclude that it could be musical.
However, this leaves little room for rests in the melody, a very important characteristic
of musical timing2. Rests are typically the indicator of the end to a musical phrase and
before the start of the next one, and if we assume an illusionary stimuli is one that is
a complete musical phrase then it is unlikely there would be a rest present. Counter to
this point however, very percussive and rhythmic sounds would not have a pitch track
at all, but could still easily be perceived as musical (e.g. the water dripping sounds of
the environmental stimuli used in the experiment), but as the training data is all vocals
then the models are not exposed to these types of stimuli.

As expected, the linear models also accepts illusionary stimuli if their melodies are close
to those found in Western compositions, as described by the Bayesian model outlined
in Section 2.3. The negative weights (and their large magnitudes) of bayesian distance

implies this is quite a telling feature. This conforms with the results of the first exper-
iment in Tierney et al. (2018a) who used the same Bayesian model of melody to asses
the likelihood of the sequence of notes and found a correlation between the mean rat-
ing change of the stimulus and this likelihood. The authors also tested for correlations
between some of the components of the melody model, namely the interval size and the
conformity to Western keys, and also saw a significant trends in both these features and
the participants ratings. However, we do not see this so much in our models — the fea-
tures we extracted which are analogous to these components max jump or mean jump are
not used by any classifier, and key fit is only used by one of the SVMs. It is possible
that these features reduce information about the interval structure down too much for

2“The music is not in the notes, but in the silence between.” — Wolfgang Amadeus Mozart
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them to capture any meaningful detail, or that there is little difference between speech
and music in these features3. The authors then conducted another experiment where
they controlled for melodic structure, but could not draw any significant conclusions
from these results. It seems then there is a connection, but the nature of how these
components interact and influence the musicality rating is complex and perhaps non-
linear. The range of note pitches is also not used by any of the models, suggesting that
vocal range does not distinguish between speech and singing, an observation also made
by List (1963).

There is further strong evidence that a musical phrase is contained in the melody — a
new observation in the study of Speech-to-Song illusion. While there is no hard, explicit
formulation of what constitutes a musical phrase, we do see some characteristics that
are generally common to musical passages, such as the linear models suggestion that the
final note is lower than previous note. Huron (1996) analysed the melodies of Western
folk songs and found that typically phrases are arched shaped, with the final note more
likely to be the lowest of the phrase, and our models appear to have made a similar
connection in transforming stimuli. We also find that the models identify illusionary
samples from the consonance of the final half of the melody by the negative weights
assigned to mean diss 3, implying the presence of some musical resolution to the end of
the melody. As several of the models use a selection of the available dissonance measures
we can conclude that there is some meaning contained in the structure of the dissonance.
Of the weights that can be interpreted, we see that actually a negative weight is assigned
to all the dissonance features implying that there should be consonance throughout the
whole melody, and not just at the end of the note sequence.

7.4 Experiment Results

We conducted an experiment that aimed to validate our model results further, and to
collect a new set of stimuli for additional analysis. We found that the new stimuli are
far more likely to transform into music according to the participants of the study, higher
than any previous experimental studies. While this could suggest that transforming
stimuli are more common than previously realised, there could be other factors at play
that account for this. First, the material selected for this experiment was not collected at
random — the authors choose the stimuli by hand and did not actively try to obtain an
equal balance between non-illusionary and illusionary sounds. This could lead to a bias,
where more ‘interesting’ sounding samples are chosen that happen to be transforming.
Next, there could be systemic errors in the setup and in the instructional text. While we

3Vos and Troost (1989) found that jumps of two or three semitones are by far the most common
musical interval, similar to what is found in voice.
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gave a positive example of the Speech-to-Song illusion for the participants to familiarise
themselves with (namely, the Diana Deutsch phrase), we did not provide a negative
example, (e.g. lowest rated stimulus of mcg). The idea was to give the listener some
higher expectation of how the illusion sounds like, but as we did not explicitly suggest
that some stimuli could not transform at all there could be a tendency to rate sounds
higher. We observed that the final rating count across all participants and stimuli
was more uniform than in the mcg experiment (compare the boxplots in Figure 4.1
and Figure 6.2) which supports this. Finally, some of the source material for the stimuli
are different to those in mcg could account for this difference. For example, generally the
non-English samples were rated higher than the other modes of speech. One particular
speaker, an interview of a hip-hop music producer, has a notably stable and rhythmic
voice that easily transformed. The difference between our set of stimuli and the previous
highlights the diversity of vocal styles that have yet to be explored in this illusion.

We tested not only speech but also environmental sounds so the two ends of the slider
scale were labelled with the more general text of Not Musical and Very Musical. While
we did offer a description of how these two should be interpreted, the labels themselves
are not particularly intuitive or precise — the meaning of ‘very musical’ could impart
an expectation that it should sound exactly like a recording of a fully orchestrated
passage for example. In one conversation with a participant after the experiment, she
claimed that while she could hear a melody she would not necessarily call it musical,
and so scored most of the stimuli rather low. On the other hand, another contributor
who is a classically trained, professional singer with experience in non-Western, micro-
tonal musical systems found the illusion particularly strong. Interestingly, her strategy
involved listening to the melody and assessing how well formed it was to give her final
rating, such that melodies that she felt ended abruptly were rated lower than fully
completed musical phrases. The diverse range of strategies used by the participants
is an ongoing problem of these sorts of perception experiments, where differing ideas
and expectations of music result in different ratings and perceptions. We attempted to
combat this somewhat by recording the score everyone rated the example stimuli and
use this a baseline for ‘normalising’ their other scores. However, we did not use this
as it makes the results incompatible with the results of previous experiments, and did
not help in creating a useful threshold in labelling the stimuli as transforming or not.
Nonetheless, we believe this is an appropriate step in future experiments since the reason
for demonstrating a positive example to the participants is to allow them to calibrate
their own internal rating scale, the same should be done to the data they provide.

Since the features of the new stimuli were quite different to the training data, the
models did not perform particularly well on the new data, even when evaluated on
only the speech stimuli. The top rated models that showed promise during the model
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selection phase did not manage to maintain their profile here and scored markedly worse,
with most only attaining an accuracy slightly above baseline. However, the linear SVM
model performs remarkably well despite this and it shows signs of some generalisation
by scoring consistently. This suggests that the features it utilises are effective, but that
they do not tell the full story as there is still room for improvements. As the non-linear
models failed on this data it implies that these over-fitted on the training data, despite
a selection procedure that tried to mitigate this. The higher variance across the K-fold
cross validation hinted that this could be a problem (especially in the ensemble models,
see Table 5.1). It is likely that the kernel SVMs have a greater capacity to over-fit, given
their extra degrees of freedom in their construction, and in the way they can manipulate
the feature space to be linearly separable.

7.5 Final Thoughts

The result that one of our models is consistent and generalising well is a promising
development in the research of this illusion. Not only does it align well to established
results, but as we can see some of the new features are utilised that offers a hint on where
future research could explore. The features designed to test some aspect of the musical
qualities of the song emerged as having some play in how the stimulus transforms that go
beyond technical aspects of the sound (e.g. stability, fit to musical key etc), suggesting
that when the listener finds music in the stimulus it is not just about these properties,
but more about the full musical idea that is conveyed by the music that emerges. I
believe this is the primary success of our approach — we have demonstrated results that
hint at an exciting new perspective onto this illusion. Nonetheless, while these features
are inspired by music itself, their use has yet to be tested on actual recordings of music
to determine how prevalent, universal or relevant they are in musical compositions, or
indeed how they should be interpreted in the musical context.

Ultimately however, these results do not directly address the most fundamental facet
to the illusion — the role of repetition in the effect. Although we have identified some
general and common characteristics of the speech that elicits the illusion, it is still not
clear why repetition is required for it to materialise. The most likely explanation is
that multiple repetitions are required for the brain to ‘measure’ some of these features,
however there is little study on the nature of how they develop over each iteration. For
example, the representation of the melody in the self-similarity matrices (Figure 3.4)
for which several of the features are based on could require multiple listens to build
this representation in the mind. These matrices are quite dense with information, so it
is easy to speculate that this picture ‘grows’ outward from the main diagonal on each
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loop, as there is more opportunity to make the comparisons between longer distance
notes to fill in and complete the matrix, before making the decision of whether the
melody is musical or not. Of course, this idea is merely a suggestion to what could be
happening in the brain and not based on any previous findings, but research on models
of mental representation and memory of melody could be of value in the discussion of
this illusion, as presumably the representation of the sound evolves over each repetition.
As the Speech-to-Song illusion is stable to the point that once the melody is heard, it
cannot easily be ‘unheard’, as soon as the brain is satisfied with hearing the music the
representation ceases to evolve, as if some minima is found and the ‘search’ for musical
information is halted. This, to me, is the heart of the mystery of the illusion.

Unfortunately, while the premise of studying this illusion was to understand further
what constitutes music, we are left wondering more about what exactly is the music we
hear in the Speech-to-Song transformation. The question then is to determine precisely
what the brain is listening out for, and I believe that pursuing the answer to this would
reveal why, exactly, some sounds sometimes behave so strangely.



Appendix A

Feature Summary

Category Feature Description

Audio

stability Smoothness of pitch track (only where notes
are found), higher values correspond to
higher instability

length Length in seconds of the stimulus, ignoring
leading and trailing silence

percent pitched Percentage of stimulus where pitch is ex-
tracted

Melodic

max jump,
num jumps,
mean jump,
last jump

Basic counts/statistics of note intervals (in
semitones) of extracted notes

range Difference in semitones between highest and
lowest note

last note length Length of last note as percentage of stimulus
length

last note lowest 1 if the last note is the lowest of all notes, 0
otherwise

key fit Score of (in range [0, 1]) of how well extracted
notes fit Krumhansl-Schmuckler key profiles

scalar interval Single measure in range [0, 1] on how close
all note intervals are to perfect integers, with
1 being all exactly integer, and 0 when all
intervals ±0.5 from some integer

i p5
i 3
i m3

Scores (in range [0, 1]) on how strong a per-
fect fifth, major and minor third is present in
the notes, where a score 1 means the interval
exists exactly
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Category Feature Description

bayesian distance Distance the extracted melody is to the
most likely musical melody (according to the
Bayesian model)

Rhythm

onset variability Measure of variability of inter-onset intervals,
where 0 means perfectly isochronous onsets,
higher values mean greater variety of inter-
vals

onset strength Standard deviation of onset strength peaks
above 0.5 (after normalising onset envelope)

npvi Normalised Pairwise Variability Index
(nPVI), measures rhythmic variability where
0 means perfectly isochronous onsets, higher
values mean greater variety of intervals

Dissonance

max dissonance,
mean dissonance,
sd dissonance

Statistics on entire dissonance matrix I

last mean diss
last max diss

Statistics on last column of dissonance ma-
trix I

mean diss 1
mean diss 2
mean diss 3

Average dissonance of notes in first half, be-
tween halves, and final half of melody, com-
puted from matrix II

mean d order 1
mean d order 2
mean d order 3
sd d order 1
sd d order 2
sd d order 3

Mean and standard deviation of dissonance
between notes k ∈ {1, 2, 3} steps apart (i.e.
between each succesive note, every second
note, and every third note)
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Feature Correlations

Feature at uva combined

stability -0.25 (0.094) -0.19 (0.015) * -0.21 (0.002) *
range -0.39 (0.009) * -0.10 (0.188) -0.16 (0.019) *

max jump -0.43 (0.003) * -0.09 (0.228) -0.16 (0.017) *
num jumps -0.17 (0.263) -0.21 (0.005) * -0.22 (0.001) *
mean jump -0.43 (0.004) * -0.07 (0.337) -0.12 (0.068)

max dissonance -0.30 (0.046) * -0.04 (0.572) -0.08 (0.227)
mean dissonance -0.19 (0.217) -0.07 (0.335) -0.09 (0.199)

sd dissonance -0.18 (0.237) 0.10 (0.181) 0.06 (0.401)
last mean diss -0.04 (0.808) 0.06 (0.435) 0.05 (0.486)
last max diss -0.08 (0.611) 0.06 (0.451) 0.03 (0.637)

percent pitched 0.04 (0.778) 0.14 (0.072) 0.12 (0.083)
scalar interval -0.00 (0.992) -0.07 (0.359) -0.06 (0.373)

i p5 -0.21 (0.161) -0.14 (0.059) -0.15 (0.030) *
i M3 0.02 (0.881) -0.30 (0.000) * -0.23 (0.001) *
i m3 -0.06 (0.719) -0.14 (0.058) -0.13 (0.064)

length -0.21 (0.161) -0.26 (0.000) * -0.27 (0.000) *
key fit 0.11 (0.470) 0.14 (0.074) 0.15 (0.032) *

bayesian distance -0.35 (0.017) * -0.10 (0.181) -0.15 (0.024) *
onset variability -0.20 (0.198) -0.23 (0.003) * -0.24 (0.000) *

onset strength -0.26 (0.081) 0.05 (0.542) -0.05 (0.459)
npvi -0.24 (0.117) 0.05 (0.528) -0.03 (0.678)

last note length 0.06 (0.682) 0.03 (0.692) 0.05 (0.469)
last note lowest -0.00 (0.996) 0.08 (0.301) 0.06 (0.413)

last jump -0.08 (0.613) -0.07 (0.365) -0.07 (0.287)
mean diss 1 -0.23 (0.126) -0.09 (0.229) -0.10 (0.127)
mean diss 2 -0.20 (0.187) -0.02 (0.838) -0.05 (0.499)
mean diss 3 -0.02 (0.922) -0.14 (0.064) -0.11 (0.112)

mean d order 1 -0.22 (0.142) -0.07 (0.352) -0.07 (0.286)
mean d order 2 -0.03 (0.848) -0.03 (0.693) -0.02 (0.722)
mean d order 3 -0.20 (0.198) 0.06 (0.470) -0.00 (0.990)

sd d order 1 0.05 (0.758) 0.08 (0.306) 0.06 (0.411)
sd d order 2 -0.09 (0.565) -0.01 (0.872) -0.04 (0.593)
sd d order 3 -0.25 (0.094) -0.11 (0.154) -0.14 (0.039) *

Table B.1: Features and their correlations to top3 score of the mcg dataset.
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Feature English non-English voice all

stability 0.11 (0.403) -0.37 (0.101) 0.03 (0.779) -0.02 (0.841)
range -0.04 (0.735) -0.52 (0.015) * -0.09 (0.432) -0.04 (0.663)

max jump -0.04 (0.724) -0.08 (0.734) -0.03 (0.759) 0.01 (0.955)
num jumps 0.24 (0.058) -0.35 (0.120) 0.08 (0.483) 0.00 (0.970)
mean jump -0.04 (0.730) -0.10 (0.654) -0.01 (0.894) 0.02 (0.879)

max dissonance -0.23 (0.069) -0.54 (0.011) * -0.33 (0.002) * -0.34 (0.001) *
mean dissonance -0.17 (0.183) -0.58 (0.006) * -0.29 (0.008) * -0.34 (0.001) *

sd dissonance -0.15 (0.237) -0.38 (0.091) -0.24 (0.026) * -0.30 (0.003) *
last mean diss -0.11 (0.377) -0.62 (0.003) * -0.26 (0.016) * -0.32 (0.001) *
last max diss -0.20 (0.112) -0.54 (0.011) * -0.31 (0.004) * -0.34 (0.001) *

percent pitched 0.31 (0.013) * -0.11 (0.626) 0.28 (0.008) * -0.00 (0.985)
scalar interval -0.07 (0.593) -0.06 (0.793) -0.08 (0.447) -0.08 (0.440)

i p5 -0.12 (0.338) -0.38 (0.088) -0.12 (0.269) -0.15 (0.147)
i M3 0.04 (0.780) -0.02 (0.947) 0.03 (0.795) 0.01 (0.943)
i m3 -0.18 (0.162) -0.01 (0.959) -0.13 (0.219) -0.19 (0.055)

length -0.02 (0.879) -0.04 (0.876) -0.05 (0.617) 0.08 (0.446)
key fit -0.04 (0.780) 0.26 (0.260) 0.04 (0.690) -0.04 (0.705)

bayesian distance -0.20 (0.108) 0.30 (0.181) -0.05 (0.627) -0.09 (0.393)
onset variability 0.09 (0.477) -0.12 (0.610) 0.02 (0.837) 0.02 (0.834)

onset strength -0.29 (0.020) * 0.37 (0.094) -0.16 (0.142) -0.19 (0.065)
npvi -0.14 (0.273) 0.21 (0.358) -0.05 (0.674) -0.10 (0.333)

last note length 0.02 (0.892) 0.43 (0.052) 0.11 (0.309) 0.08 (0.415)
last note lowest 0.06 (0.663) -0.59 (0.005) * -0.09 (0.430) -0.13 (0.216)

last jump -0.03 (0.816) 0.28 (0.222) 0.02 (0.891) 0.05 (0.655)
mean diss 1 -0.08 (0.546) -0.44 (0.045) * -0.19 (0.072) -0.26 (0.010) *
mean diss 2 -0.15 (0.240) -0.35 (0.122) -0.22 (0.039) * -0.29 (0.003) *
mean diss 3 -0.18 (0.143) -0.71 (0.000) * -0.33 (0.002) * -0.38 (0.000) *

mean d order 1 -0.27 (0.029) * -0.63 (0.002) * -0.36 (0.001) * -0.39 (0.000) *
mean d order 2 -0.16 (0.213) -0.30 (0.184) -0.21 (0.047) * -0.29 (0.004) *
mean d order 3 -0.17 (0.169) -0.15 (0.506) -0.21 (0.056) -0.28 (0.006) *

sd d order 1 0.13 (0.320) -0.11 (0.625) 0.04 (0.699) -0.06 (0.549)
sd d order 2 0.06 (0.640) -0.14 (0.543) -0.01 (0.892) -0.09 (0.368)
sd d order 3 0.14 (0.267) -0.46 (0.038) * -0.00 (0.968) -0.06 (0.586)

Table B.2: Feature correlations of al for various subsets of stimuli. Environmental
stimuli excluded, as there are no significant correlations.

Pearson’s correlation coefficient of the relationship between top three score mean and
feature values. Brackets contain p-values, measuring the probability of uncorrelated data
produces the coefficient, asterisk denotes p < 0.05.
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Model Features

SVM kernel
Feature logistic linear RBF poly-3 sigmoid

stability -0.278 -0.411 • • •
range — — — — —

max jump — — — — —
num jumps — -0.488 — — •
mean jump — — — — —

max dissonance — — — • —
mean dissonance — — — • —

sd dissonance — — — — —
last mean diss — — — — •
last max diss — — • — —

percent pitched 0.551 0.703 — — •
scalar interval — — — — —

i p5 — 0.047 • — —
i M3 — — • — —
i m3 — — — — —

length — — — • —
key fit — — — — •

bayesian distance -0.463 -0.453 • — •
onset variability -0.278 — — — —

onset strength — — — — —
npvi — — — • —

last note length -0.406 -0.545 — • •
last note lowest — 0.217 — • •

last jump -0.154 — — — —
mean diss 1 — — — — —
mean diss 2 — — — — —
mean diss 3 -0.242 -0.323 — — •

mean d order 1 — — — — —
mean d order 2 — — • — —
mean d order 3 — — — — —

sd d order 1 — — — • —
sd d order 2 -0.004 -0.194 — • —
sd d order 3 -0.439 — • — •

Table C.1: The features used by each model, where the coefficients assigned by the
linear models are shown.
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Éditions du Seuil, 1952. ISBN 978-2-02-002572-0.

Helmut Schaffrath. The Essen folksong collection in the humdrum kern format (D.
Huron, ed.). Menlo Park, CA: Center for Computer Assisted Research in the Human-
ities, 1995.



References 93

Donia R. Scott, Steve D. Isard, and Benedicte de Boysson-Bardies. On the measurement
of rhythmic irregularity: a reply to Benguerel. Journal of Phonetics, 14(2):327–330,
1986. ISSN 0095-4470. doi: 10.1016/S0095-4470(19)30659-X.

William A. Sethares. Tuning, timbre, spectrum, scale. Springer Science & Business
Media, 2005.

Samuel S. Shapiro and Martin B. Wilk. An analysis of variance test for normality
(complete samples). Biometrika, 52(3/4):591–611, 1965. ISSN 00063444. doi: 10.
2307/2333709.

Roger N. Shepard. Geometrical approximations to the structure of musical pitch. Psy-
chological review, 89(4):305, 1982.

Rhimmon Simchy-Gross and Elizabeth H. Margulis. The sound-to-music illusion:
Repetition can musicalize nonspeech sounds. Music & Science, 1, 2018. doi:
10.1177/2059204317731992.

David Temperley. A probabilistic model of melody perception. Cognitive Science, 32
(2):418–444, 2008. doi: 10.1080/03640210701864089.

Brian Thompson. Discrimination between singing and speech in real-world audio. In
2014 IEEE Spoken Language Technology Workshop (SLT), pages 407–412. IEEE, 2014.

Adam Tierney, Fred Dick, Diana Deutsch, and Marty Sereno. Speech versus Song:
Multiple Pitch-Sensitive Areas Revealed by a Naturally Occurring Musical Illusion.
Cerebral Cortex, 23(2):249–254, 02 2012. ISSN 1047-3211. doi: 10.1093/cercor/bhs003.

Adam Tierney, Aniruddh D. Patel, and Mara Breen. Acoustic foundations of the speech-
to-song illusion. Journal of Experimental Psychology: General, 147:888–904, 06 2018a.
doi: 10.1037/xge0000455.

Adam Tierney, Aniruddh D. Patel, and Mara Breen. Repetition Enhances the Musicality
of Speech and Tone Stimuli to Similar Degrees. Music Perception, 35(5):573–578, 06
2018b. ISSN 0730-7829. doi: 10.1525/mp.2018.35.5.573.

Christina M. Vanden Bosch der Nederlanden, Erin E. Hannon, and Joel S. Snyder. Ev-
eryday musical experience is sufficient to perceive the speech-to-song illusion. Journal
of experimental psychology: General, 144(2):e43, 2015.

Vladimir N. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998. ISBN
978-0-471-03003-4.

Pantelis Vassilakis. Auditory roughness estimation of complex spectra —– roughness
degrees and dissonance ratings of harmonic intervals revisited. The Journal of the
Acoustical Society of America, 110(5):2755–2755, 2001. doi: 10.1121/1.4777600.



References 94

Jean-Philippe Vert, Koji Tsuda, and Bernhard Schölkopf. A primer on kernel methods.
Kernel methods in computational biology, 47:35–70, 2004.

Hermann Von Helmholtz. On the Sensations of Tone as a Physiological Basis for the
Theory of Music. London: Longmans, Green and Company, 1875.

Piet G. Vos and Jim M. Troost. Ascending and descending melodic intervals: Statistical
findings and their perceptual relevance. Music Perception, 6(4):383–396, 1989.

Richard M. Warren and Richard L. Gregory. An auditory analogue of the visual re-
versible figure. The American journal of psychology, 1958.

Raymond P. Whorley and Darrell Conklin. Music generation from statistical models
of harmony. Journal of New Music Research, 45(2):160–183, 2016. doi: 10.1080/
09298215.2016.1173708.

Robert B. Zajonc. Attitudinal effects of mere exposure. Journal of personality and social
psychology, 9(2, Pt.2):1–27, 1968. doi: 10.1037/h0025848.

Harry Zhang. Exploring conditions for the optimality of naive Bayes. International
Journal of Pattern Recognition and Artificial Intelligence, 19(02):183–198, 2005. doi:
10.1142/S0218001405003983.

Shuo Zhang. Speech-to-song illusion: evidence from MC. Sino-European Winter School
of Logic, Language, and Computation ([SELLC2010SS]), 2010.

Xin Zhang and Zbigniew W. Ras. Analysis of sound features for music timbre recog-
nition. In 2007 International Conference on Multimedia and Ubiquitous Engineering
(MUE’07), pages 3–8, 2007. doi: 10.1109/MUE.2007.85.


	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 The Mystery of Repetition
	1.2 The Transformation of Sound
	1.2.1 Auditory Illusions
	1.2.2 Repetition Based Illusions
	1.2.3 The Speech-to-Song Illusion
	1.2.4 Beyond Speech and Song

	1.3 Thesis Overview

	2 Melody Extraction
	2.1 Audio Analysis Methods
	2.2 The Melody Extraction Algorithm
	2.2.1 Problem Statement and Definitions
	2.2.2 Note Segmentation
	2.2.3 Note Extraction
	2.2.4 Parameterisation and Evaluation

	2.3 Bayesian Melody Search
	2.3.1 Method Outline
	2.3.2 Distribution of Melodies
	2.3.3 Note and Key Calculation
	2.3.4 Search Space


	3 Feature Engineering
	3.1 Audio Features
	3.2 Melodic Features
	3.3 Rhythmic Features
	3.4 Dissonance Features
	3.4.1 Quantifying Dissonance
	3.4.2 The Self-Similarity Matrix
	3.4.3 Feature Measurements


	4 Data Analysis
	4.1 Audio Stimuli
	4.1.1 Materials
	4.1.2 Human Ratings
	4.1.3 Manipulated Stimuli

	4.2 Data Preparation
	4.2.1 Aggregation Schemes
	4.2.2 Data filtering

	4.3 Feature Distributions and Correlations

	5 Classification Models
	5.1 Statistical Modelling
	5.1.1 The Logistic Model
	5.1.2 Support Vector Machines
	5.1.3 Ensemble Methods

	5.2 Feature Selection
	5.2.1 Evaluation
	5.2.2 Search Procedure

	5.3 Results

	6 Validation Experiment
	6.1 Setup
	6.1.1 Material
	6.1.2 Procedure

	6.2 Results
	6.2.1 Rating Distributions
	6.2.2 Feature Analysis
	6.2.3 Model Predictions


	7 Discussions and Conclusion
	7.1 Feature Methods
	7.2 Data Analysis
	7.3 The Models
	7.4 Experiment Results
	7.5 Final Thoughts

	A Feature Summary
	B Feature Correlations
	C Model Features
	References

